mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-10 08:38:30 +00:00
feat: improve data training for models up to 7B parameters (#3085)
* feat: improve data training for models up to 7B parameters. * docs: training considerations for small models to the documentation
This commit is contained in:
@@ -5,6 +5,7 @@ from pydantic import BaseModel, Field
|
||||
from crewai.utilities import Converter
|
||||
from crewai.utilities.events import TaskEvaluationEvent, crewai_event_bus
|
||||
from crewai.utilities.pydantic_schema_parser import PydanticSchemaParser
|
||||
from crewai.utilities.training_converter import TrainingConverter
|
||||
|
||||
|
||||
class Entity(BaseModel):
|
||||
@@ -133,7 +134,7 @@ class TaskEvaluator:
|
||||
).get_schema()
|
||||
instructions = f"{instructions}\n\nThe json should have the following structure, with the following keys:\n{model_schema}"
|
||||
|
||||
converter = Converter(
|
||||
converter = TrainingConverter(
|
||||
llm=self.llm,
|
||||
text=evaluation_query,
|
||||
model=TrainingTaskEvaluation,
|
||||
|
||||
89
src/crewai/utilities/training_converter.py
Normal file
89
src/crewai/utilities/training_converter.py
Normal file
@@ -0,0 +1,89 @@
|
||||
import json
|
||||
import re
|
||||
from typing import Any, get_origin
|
||||
|
||||
from pydantic import BaseModel, ValidationError
|
||||
|
||||
from crewai.utilities.converter import Converter, ConverterError
|
||||
|
||||
|
||||
class TrainingConverter(Converter):
|
||||
"""
|
||||
A specialized converter for smaller LLMs (up to 7B parameters) that handles validation errors
|
||||
by breaking down the model into individual fields and querying the LLM for each field separately.
|
||||
"""
|
||||
|
||||
def to_pydantic(self, current_attempt=1) -> BaseModel:
|
||||
try:
|
||||
return super().to_pydantic(current_attempt)
|
||||
except ConverterError:
|
||||
return self._convert_field_by_field()
|
||||
|
||||
def _convert_field_by_field(self) -> BaseModel:
|
||||
field_values = {}
|
||||
|
||||
for field_name, field_info in self.model.model_fields.items():
|
||||
field_description = field_info.description
|
||||
field_type = field_info.annotation
|
||||
|
||||
response = self._ask_llm_for_field(field_name, field_description)
|
||||
value = self._process_field_value(response, field_type)
|
||||
field_values[field_name] = value
|
||||
|
||||
try:
|
||||
return self.model(**field_values)
|
||||
except ValidationError as e:
|
||||
raise ConverterError(f"Failed to create model from individually collected fields: {e}")
|
||||
|
||||
def _ask_llm_for_field(self, field_name: str, field_description: str) -> str:
|
||||
prompt = f"""
|
||||
Based on the following information:
|
||||
{self.text}
|
||||
|
||||
Please provide ONLY the {field_name} field value as described:
|
||||
"{field_description}"
|
||||
|
||||
Respond with ONLY the requested information, nothing else.
|
||||
"""
|
||||
return self.llm.call([
|
||||
{"role": "system", "content": f"Extract the {field_name} from the previous information."},
|
||||
{"role": "user", "content": prompt}
|
||||
])
|
||||
|
||||
def _process_field_value(self, response: str, field_type: Any) -> Any:
|
||||
response = response.strip()
|
||||
origin = get_origin(field_type)
|
||||
|
||||
if origin is list:
|
||||
return self._parse_list(response)
|
||||
|
||||
if field_type is float:
|
||||
return self._parse_float(response)
|
||||
|
||||
if field_type is str:
|
||||
return response
|
||||
|
||||
return response
|
||||
|
||||
def _parse_list(self, response: str) -> list:
|
||||
try:
|
||||
if response.startswith('['):
|
||||
return json.loads(response)
|
||||
|
||||
items = [item.strip() for item in response.split('\n') if item.strip()]
|
||||
return [self._strip_bullet(item) for item in items]
|
||||
|
||||
except json.JSONDecodeError:
|
||||
return [response]
|
||||
|
||||
def _parse_float(self, response: str) -> float:
|
||||
try:
|
||||
match = re.search(r'(\d+(\.\d+)?)', response)
|
||||
return float(match.group(1)) if match else 0.0
|
||||
except Exception:
|
||||
return 0.0
|
||||
|
||||
def _strip_bullet(self, item: str) -> str:
|
||||
if item.startswith(('- ', '* ')):
|
||||
return item[2:].strip()
|
||||
return item.strip()
|
||||
Reference in New Issue
Block a user