mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-10 16:48:30 +00:00
Docs/release 0.175.0 docs (#3441)
* docs(install): note OpenAI SDK requirement openai>=1.13.3 for 0.175.0 * docs(cli): document device-code login and config reset guidance; renumber sections * docs(flows): document conditional @start and resumable execution semantics * docs(tasks): move max_retries to deprecation note under attributes table * docs: provider-neutral RAG client config; entity memory batching; trigger payload note; tracing batch manager * docs(cli): fix duplicate numbering (renumber Login/API Keys/Configuration sections)
This commit is contained in:
@@ -282,7 +282,25 @@ Watch this video tutorial for a step-by-step demonstration of deploying your cre
|
||||
allowfullscreen
|
||||
></iframe>
|
||||
|
||||
### 11. API Keys
|
||||
### 12. Login
|
||||
|
||||
Authenticate with CrewAI Enterprise using a secure device code flow (no email entry required).
|
||||
|
||||
```shell Terminal
|
||||
crewai login
|
||||
```
|
||||
|
||||
What happens:
|
||||
- A verification URL and short code are displayed in your terminal
|
||||
- Your browser opens to the verification URL
|
||||
- Enter/confirm the code to complete authentication
|
||||
|
||||
Notes:
|
||||
- The OAuth2 provider and domain are configured via `crewai config` (defaults use `login.crewai.com`)
|
||||
- After successful login, the CLI also attempts to authenticate to the Tool Repository automatically
|
||||
- If you reset your configuration, run `crewai login` again to re-authenticate
|
||||
|
||||
### 13. API Keys
|
||||
|
||||
When running ```crewai create crew``` command, the CLI will show you a list of available LLM providers to choose from, followed by model selection for your chosen provider.
|
||||
|
||||
@@ -310,7 +328,7 @@ See the following link for each provider's key name:
|
||||
|
||||
* [LiteLLM Providers](https://docs.litellm.ai/docs/providers)
|
||||
|
||||
### 12. Configuration Management
|
||||
### 14. Configuration Management
|
||||
|
||||
Manage CLI configuration settings for CrewAI.
|
||||
|
||||
@@ -385,6 +403,10 @@ Reset all configuration to defaults:
|
||||
crewai config reset
|
||||
```
|
||||
|
||||
<Tip>
|
||||
After resetting configuration, re-run `crewai login` to authenticate again.
|
||||
</Tip>
|
||||
|
||||
<Note>
|
||||
Configuration settings are stored in `~/.config/crewai/settings.json`. Some settings like organization name and UUID are read-only and managed through authentication and organization commands. Tool repository related settings are hidden and cannot be set directly by users.
|
||||
</Note>
|
||||
|
||||
@@ -97,7 +97,13 @@ The state's unique ID and stored data can be useful for tracking flow executions
|
||||
|
||||
### @start()
|
||||
|
||||
The `@start()` decorator is used to mark a method as the starting point of a Flow. When a Flow is started, all the methods decorated with `@start()` are executed in parallel. You can have multiple start methods in a Flow, and they will all be executed when the Flow is started.
|
||||
The `@start()` decorator marks entry points for a Flow. You can:
|
||||
|
||||
- Declare multiple unconditional starts: `@start()`
|
||||
- Gate a start on a prior method or router label: `@start("method_or_label")`
|
||||
- Provide a callable condition to control when a start should fire
|
||||
|
||||
All satisfied `@start()` methods will execute (often in parallel) when the Flow begins or resumes.
|
||||
|
||||
### @listen()
|
||||
|
||||
|
||||
@@ -24,6 +24,41 @@ For file-based Knowledge Sources, make sure to place your files in a `knowledge`
|
||||
Also, use relative paths from the `knowledge` directory when creating the source.
|
||||
</Tip>
|
||||
|
||||
### Vector store (RAG) client configuration
|
||||
|
||||
CrewAI exposes a provider-neutral RAG client abstraction for vector stores. The default provider is ChromaDB, and Qdrant is supported as well. You can switch providers using configuration utilities.
|
||||
|
||||
Supported today:
|
||||
- ChromaDB (default)
|
||||
- Qdrant
|
||||
|
||||
```python Code
|
||||
from crewai.rag.config.utils import set_rag_config, get_rag_client, clear_rag_config
|
||||
|
||||
# ChromaDB (default)
|
||||
from crewai.rag.chromadb.config import ChromaDBConfig
|
||||
set_rag_config(ChromaDBConfig())
|
||||
chromadb_client = get_rag_client()
|
||||
|
||||
# Qdrant
|
||||
from crewai.rag.qdrant.config import QdrantConfig
|
||||
set_rag_config(QdrantConfig())
|
||||
qdrant_client = get_rag_client()
|
||||
|
||||
# Example operations (same API for any provider)
|
||||
client = qdrant_client # or chromadb_client
|
||||
client.create_collection(collection_name="docs")
|
||||
client.add_documents(
|
||||
collection_name="docs",
|
||||
documents=[{"id": "1", "content": "CrewAI enables collaborative AI agents."}],
|
||||
)
|
||||
results = client.search(collection_name="docs", query="collaborative agents", limit=3)
|
||||
|
||||
clear_rag_config() # optional reset
|
||||
```
|
||||
|
||||
This RAG client is separate from Knowledge’s built-in storage. Use it when you need direct vector-store control or custom retrieval pipelines.
|
||||
|
||||
### Basic String Knowledge Example
|
||||
|
||||
```python Code
|
||||
|
||||
@@ -738,6 +738,17 @@ print(f"OpenAI: {openai_time:.2f}s")
|
||||
print(f"Ollama: {ollama_time:.2f}s")
|
||||
```
|
||||
|
||||
### Entity Memory batching behavior
|
||||
|
||||
Entity Memory supports batching when saving multiple entities at once. When you pass a list of `EntityMemoryItem`, the system:
|
||||
|
||||
- Emits a single MemorySaveStartedEvent with `entity_count`
|
||||
- Saves each entity internally, collecting any partial errors
|
||||
- Emits MemorySaveCompletedEvent with aggregate metadata (saved count, errors)
|
||||
- Raises a partial-save exception if some entities failed (includes counts)
|
||||
|
||||
This improves performance and observability when writing many entities in one operation.
|
||||
|
||||
## 2. External Memory
|
||||
External Memory provides a standalone memory system that operates independently from the crew's built-in memory. This is ideal for specialized memory providers or cross-application memory sharing.
|
||||
|
||||
|
||||
@@ -61,6 +61,11 @@ crew = Crew(
|
||||
| **Guardrail** _(optional)_ | `guardrail` | `Optional[Callable]` | Function to validate task output before proceeding to next task. |
|
||||
| **Guardrail Max Retries** _(optional)_ | `guardrail_max_retries` | `Optional[int]` | Maximum number of retries when guardrail validation fails. Defaults to 3. |
|
||||
|
||||
<Note type="warning" title="Deprecated: max_retries">
|
||||
The task attribute `max_retries` is deprecated and will be removed in v1.0.0.
|
||||
Use `guardrail_max_retries` instead to control retry attempts when a guardrail fails.
|
||||
</Note>
|
||||
|
||||
## Creating Tasks
|
||||
|
||||
There are two ways to create tasks in CrewAI: using **YAML configuration (recommended)** or defining them **directly in code**.
|
||||
@@ -432,7 +437,7 @@ When a guardrail returns `(False, error)`:
|
||||
2. The agent attempts to fix the issue
|
||||
3. The process repeats until:
|
||||
- The guardrail returns `(True, result)`
|
||||
- Maximum retries are reached
|
||||
- Maximum retries are reached (`guardrail_max_retries`)
|
||||
|
||||
Example with retry handling:
|
||||
```python Code
|
||||
|
||||
Reference in New Issue
Block a user