Merge branch 'main' into devin/1740154466-add-o3-mini-context-window

This commit is contained in:
Brandon Hancock (bhancock_ai)
2025-02-25 15:30:01 -05:00
committed by GitHub
28 changed files with 2345 additions and 1624 deletions

View File

@@ -915,8 +915,6 @@ def test_tool_result_as_answer_is_the_final_answer_for_the_agent():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_tool_usage_information_is_appended_to_agent():
from datetime import UTC, datetime
from crewai.tools import BaseTool
class MyCustomTool(BaseTool):
@@ -926,36 +924,30 @@ def test_tool_usage_information_is_appended_to_agent():
def _run(self) -> str:
return "Howdy!"
fixed_datetime = datetime(2025, 2, 10, 12, 0, 0, tzinfo=UTC)
with patch("datetime.datetime") as mock_datetime:
mock_datetime.now.return_value = fixed_datetime
mock_datetime.side_effect = lambda *args, **kw: datetime(*args, **kw)
agent1 = Agent(
role="Friendly Neighbor",
goal="Make everyone feel welcome",
backstory="You are the friendly neighbor",
tools=[MyCustomTool(result_as_answer=True)],
)
agent1 = Agent(
role="Friendly Neighbor",
goal="Make everyone feel welcome",
backstory="You are the friendly neighbor",
tools=[MyCustomTool(result_as_answer=True)],
)
greeting = Task(
description="Say an appropriate greeting.",
expected_output="The greeting.",
agent=agent1,
)
tasks = [greeting]
crew = Crew(agents=[agent1], tasks=tasks)
greeting = Task(
description="Say an appropriate greeting.",
expected_output="The greeting.",
agent=agent1,
)
tasks = [greeting]
crew = Crew(agents=[agent1], tasks=tasks)
crew.kickoff()
assert agent1.tools_results == [
{
"result": "Howdy!",
"tool_name": "Decide Greetings",
"tool_args": {},
"result_as_answer": True,
"start_time": fixed_datetime,
}
]
crew.kickoff()
assert agent1.tools_results == [
{
"result": "Howdy!",
"tool_name": "Decide Greetings",
"tool_args": {},
"result_as_answer": True,
}
]
def test_agent_definition_based_on_dict():

View File

@@ -833,6 +833,12 @@ def test_crew_verbose_output(capsys):
crew.kickoff()
captured = capsys.readouterr()
# Filter out event listener logs (lines starting with '[')
filtered_output = "\n".join(
line for line in captured.out.split("\n") if not line.startswith("[")
)
expected_strings = [
"\x1b[1m\x1b[95m# Agent:\x1b[00m \x1b[1m\x1b[92mResearcher",
"\x1b[00m\n\x1b[95m## Task:\x1b[00m \x1b[92mResearch AI advancements.",
@@ -845,27 +851,19 @@ def test_crew_verbose_output(capsys):
]
for expected_string in expected_strings:
assert expected_string in captured.out
assert expected_string in filtered_output
# Now test with verbose set to False
crew.verbose = False
crew._logger = Logger(verbose=False)
crew.kickoff()
expected_listener_logs = [
"[🚀 CREW 'CREW' STARTED]",
"[📋 TASK STARTED: RESEARCH AI ADVANCEMENTS.]",
"[🤖 AGENT 'RESEARCHER' STARTED TASK]",
"[✅ AGENT 'RESEARCHER' COMPLETED TASK]",
"[✅ TASK COMPLETED: RESEARCH AI ADVANCEMENTS.]",
"[📋 TASK STARTED: WRITE ABOUT AI IN HEALTHCARE.]",
"[🤖 AGENT 'SENIOR WRITER' STARTED TASK]",
"[✅ AGENT 'SENIOR WRITER' COMPLETED TASK]",
"[✅ TASK COMPLETED: WRITE ABOUT AI IN HEALTHCARE.]",
"[✅ CREW 'CREW' COMPLETED]",
]
captured = capsys.readouterr()
for log in expected_listener_logs:
assert log in captured.out
filtered_output = "\n".join(
line
for line in captured.out.split("\n")
if not line.startswith("[") and line.strip() and not line.startswith("\x1b")
)
assert filtered_output == ""
@pytest.mark.vcr(filter_headers=["authorization"])

View File

@@ -1,360 +0,0 @@
import os
from datetime import UTC, datetime
from unittest.mock import MagicMock, patch
from uuid import UUID
import pytest
from crewai.traces.context import TraceContext
from crewai.traces.enums import CrewType, RunType, TraceType
from crewai.traces.models import (
CrewTrace,
FlowStepIO,
LLMRequest,
LLMResponse,
)
from crewai.traces.unified_trace_controller import (
UnifiedTraceController,
init_crew_main_trace,
init_flow_main_trace,
should_trace,
trace_flow_step,
trace_llm_call,
)
class TestUnifiedTraceController:
@pytest.fixture
def basic_trace_controller(self):
return UnifiedTraceController(
trace_type=TraceType.LLM_CALL,
run_type=RunType.KICKOFF,
crew_type=CrewType.CREW,
run_id="test-run-id",
agent_role="test-agent",
task_name="test-task",
task_description="test description",
task_id="test-task-id",
)
def test_initialization(self, basic_trace_controller):
"""Test basic initialization of UnifiedTraceController"""
assert basic_trace_controller.trace_type == TraceType.LLM_CALL
assert basic_trace_controller.run_type == RunType.KICKOFF
assert basic_trace_controller.crew_type == CrewType.CREW
assert basic_trace_controller.run_id == "test-run-id"
assert basic_trace_controller.agent_role == "test-agent"
assert basic_trace_controller.task_name == "test-task"
assert basic_trace_controller.task_description == "test description"
assert basic_trace_controller.task_id == "test-task-id"
assert basic_trace_controller.status == "running"
assert isinstance(UUID(basic_trace_controller.trace_id), UUID)
def test_start_trace(self, basic_trace_controller):
"""Test starting a trace"""
result = basic_trace_controller.start_trace()
assert result == basic_trace_controller
assert basic_trace_controller.start_time is not None
assert isinstance(basic_trace_controller.start_time, datetime)
def test_end_trace_success(self, basic_trace_controller):
"""Test ending a trace successfully"""
basic_trace_controller.start_trace()
basic_trace_controller.end_trace(result={"test": "result"})
assert basic_trace_controller.end_time is not None
assert basic_trace_controller.status == "completed"
assert basic_trace_controller.error is None
assert basic_trace_controller.context.get("response") == {"test": "result"}
def test_end_trace_with_error(self, basic_trace_controller):
"""Test ending a trace with an error"""
basic_trace_controller.start_trace()
basic_trace_controller.end_trace(error="Test error occurred")
assert basic_trace_controller.end_time is not None
assert basic_trace_controller.status == "error"
assert basic_trace_controller.error == "Test error occurred"
def test_add_child_trace(self, basic_trace_controller):
"""Test adding a child trace"""
child_trace = {"id": "child-1", "type": "test"}
basic_trace_controller.add_child_trace(child_trace)
assert len(basic_trace_controller.children) == 1
assert basic_trace_controller.children[0] == child_trace
def test_to_crew_trace_llm_call(self):
"""Test converting to CrewTrace for LLM call"""
test_messages = [{"role": "user", "content": "test"}]
test_response = {
"content": "test response",
"finish_reason": "stop",
}
controller = UnifiedTraceController(
trace_type=TraceType.LLM_CALL,
run_type=RunType.KICKOFF,
crew_type=CrewType.CREW,
run_id="test-run-id",
context={
"messages": test_messages,
"temperature": 0.7,
"max_tokens": 100,
},
)
# Set model and messages in the context
controller.context["model"] = "gpt-4"
controller.context["messages"] = test_messages
controller.start_trace()
controller.end_trace(result=test_response)
crew_trace = controller.to_crew_trace()
assert isinstance(crew_trace, CrewTrace)
assert isinstance(crew_trace.request, LLMRequest)
assert isinstance(crew_trace.response, LLMResponse)
assert crew_trace.request.model == "gpt-4"
assert crew_trace.request.messages == test_messages
assert crew_trace.response.content == test_response["content"]
assert crew_trace.response.finish_reason == test_response["finish_reason"]
def test_to_crew_trace_flow_step(self):
"""Test converting to CrewTrace for flow step"""
flow_step_data = {
"function_name": "test_function",
"inputs": {"param1": "value1"},
"metadata": {"meta": "data"},
}
controller = UnifiedTraceController(
trace_type=TraceType.FLOW_STEP,
run_type=RunType.KICKOFF,
crew_type=CrewType.FLOW,
run_id="test-run-id",
flow_step=flow_step_data,
)
controller.start_trace()
controller.end_trace(result="test result")
crew_trace = controller.to_crew_trace()
assert isinstance(crew_trace, CrewTrace)
assert isinstance(crew_trace.flow_step, FlowStepIO)
assert crew_trace.flow_step.function_name == "test_function"
assert crew_trace.flow_step.inputs == {"param1": "value1"}
assert crew_trace.flow_step.outputs == {"result": "test result"}
def test_should_trace(self):
"""Test should_trace function"""
with patch.dict(os.environ, {"CREWAI_ENABLE_TRACING": "true"}):
assert should_trace() is True
with patch.dict(os.environ, {"CREWAI_ENABLE_TRACING": "false"}):
assert should_trace() is False
with patch.dict(os.environ, clear=True):
assert should_trace() is False
@pytest.mark.asyncio
async def test_trace_flow_step_decorator(self):
"""Test trace_flow_step decorator"""
class TestFlow:
flow_id = "test-flow-id"
@trace_flow_step
async def test_method(self, method_name, method, *args, **kwargs):
return "test result"
with patch.dict(os.environ, {"CREWAI_ENABLE_TRACING": "true"}):
flow = TestFlow()
result = await flow.test_method("test_method", lambda x: x, arg1="value1")
assert result == "test result"
def test_trace_llm_call_decorator(self):
"""Test trace_llm_call decorator"""
class TestLLM:
model = "gpt-4"
temperature = 0.7
max_tokens = 100
stop = None
def _get_execution_context(self):
return MagicMock(), MagicMock()
def _get_new_messages(self, messages):
return messages
def _get_new_tool_results(self, agent):
return []
@trace_llm_call
def test_method(self, params):
return {
"choices": [
{
"message": {"content": "test response"},
"finish_reason": "stop",
}
],
"usage": {
"total_tokens": 50,
"prompt_tokens": 20,
"completion_tokens": 30,
},
}
with patch.dict(os.environ, {"CREWAI_ENABLE_TRACING": "true"}):
llm = TestLLM()
result = llm.test_method({"messages": []})
assert result["choices"][0]["message"]["content"] == "test response"
def test_init_crew_main_trace_kickoff(self):
"""Test init_crew_main_trace in kickoff mode"""
trace_context = None
class TestCrew:
id = "test-crew-id"
_test = False
_train = False
@init_crew_main_trace
def test_method(self):
nonlocal trace_context
trace_context = TraceContext.get_current()
return "test result"
with patch.dict(os.environ, {"CREWAI_ENABLE_TRACING": "true"}):
crew = TestCrew()
result = test_method(crew)
assert result == "test result"
assert trace_context is not None
assert trace_context.trace_type == TraceType.LLM_CALL
assert trace_context.run_type == RunType.KICKOFF
assert trace_context.crew_type == CrewType.CREW
assert trace_context.run_id == str(crew.id)
def test_init_crew_main_trace_test_mode(self):
"""Test init_crew_main_trace in test mode"""
trace_context = None
class TestCrew:
id = "test-crew-id"
_test = True
_train = False
@init_crew_main_trace
def test_method(self):
nonlocal trace_context
trace_context = TraceContext.get_current()
return "test result"
with patch.dict(os.environ, {"CREWAI_ENABLE_TRACING": "true"}):
crew = TestCrew()
result = test_method(crew)
assert result == "test result"
assert trace_context is not None
assert trace_context.run_type == RunType.TEST
def test_init_crew_main_trace_train_mode(self):
"""Test init_crew_main_trace in train mode"""
trace_context = None
class TestCrew:
id = "test-crew-id"
_test = False
_train = True
@init_crew_main_trace
def test_method(self):
nonlocal trace_context
trace_context = TraceContext.get_current()
return "test result"
with patch.dict(os.environ, {"CREWAI_ENABLE_TRACING": "true"}):
crew = TestCrew()
result = test_method(crew)
assert result == "test result"
assert trace_context is not None
assert trace_context.run_type == RunType.TRAIN
@pytest.mark.asyncio
async def test_init_flow_main_trace(self):
"""Test init_flow_main_trace decorator"""
trace_context = None
test_inputs = {"test": "input"}
class TestFlow:
flow_id = "test-flow-id"
@init_flow_main_trace
async def test_method(self, **kwargs):
nonlocal trace_context
trace_context = TraceContext.get_current()
# Verify the context is set during execution
assert trace_context.context["context"]["inputs"] == test_inputs
return "test result"
with patch.dict(os.environ, {"CREWAI_ENABLE_TRACING": "true"}):
flow = TestFlow()
result = await flow.test_method(inputs=test_inputs)
assert result == "test result"
assert trace_context is not None
assert trace_context.trace_type == TraceType.FLOW_STEP
assert trace_context.crew_type == CrewType.FLOW
assert trace_context.run_type == RunType.KICKOFF
assert trace_context.run_id == str(flow.flow_id)
assert trace_context.context["context"]["inputs"] == test_inputs
def test_trace_context_management(self):
"""Test TraceContext management"""
trace1 = UnifiedTraceController(
trace_type=TraceType.LLM_CALL,
run_type=RunType.KICKOFF,
crew_type=CrewType.CREW,
run_id="test-run-1",
)
trace2 = UnifiedTraceController(
trace_type=TraceType.FLOW_STEP,
run_type=RunType.TEST,
crew_type=CrewType.FLOW,
run_id="test-run-2",
)
# Test that context is initially empty
assert TraceContext.get_current() is None
# Test setting and getting context
with TraceContext.set_current(trace1):
assert TraceContext.get_current() == trace1
# Test nested context
with TraceContext.set_current(trace2):
assert TraceContext.get_current() == trace2
# Test context restoration after nested block
assert TraceContext.get_current() == trace1
# Test context cleanup after with block
assert TraceContext.get_current() is None
def test_trace_context_error_handling(self):
"""Test TraceContext error handling"""
trace = UnifiedTraceController(
trace_type=TraceType.LLM_CALL,
run_type=RunType.KICKOFF,
crew_type=CrewType.CREW,
run_id="test-run",
)
# Test that context is properly cleaned up even if an error occurs
try:
with TraceContext.set_current(trace):
raise ValueError("Test error")
except ValueError:
pass
assert TraceContext.get_current() is None

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,236 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are base_agent. You are
a helpful assistant that just says hi\nYour personal goal is: Just say hi\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Just say hi\n\nThis is the expected criteria for
your final answer: hi\nyou MUST return the actual complete content as the final
answer, not a summary.\n\nBegin! This is VERY important to you, use the tools
available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '838'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-B4VsaBZ4ec4b0ab4pkqWgyxTFVVfc\",\n \"object\":
\"chat.completion\",\n \"created\": 1740415556,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: hi\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
161,\n \"completion_tokens\": 12,\n \"total_tokens\": 173,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_7fcd609668\"\n}\n"
headers:
CF-RAY:
- 9170edc5da6f230e-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 24 Feb 2025 16:45:57 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=lvRw4Nyef7N35to64fj2_kHDfbZp0KSFbwgF5chYMRI-1740415557-1.0.1.1-o5BaN1FpBwv5Wq6zIlv0rCB28lk5hVI9wZQWU3pig1jgyAKDkYzTwZ0MlSR6v6TPIX9RfepjrO3.Gk3FEmcVRw;
path=/; expires=Mon, 24-Feb-25 17:15:57 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=ySaVoTQvAcQyH5QoJQJDj75e5j8HwGFPOlFMAWEvXJk-1740415557302-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '721'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999808'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_fc3b3bcd4382cddaa3c04ce7003e4857
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "system", "content": "You are Task Execution Evaluator.
Evaluator agent for crew evaluation with precise capabilities to evaluate the
performance of the agents in the crew based on the tasks they have performed\nYour
personal goal is: Your goal is to evaluate the performance of the agents in
the crew based on the tasks they have performed using score from 1 to 10 evaluating
on completion, quality, and overall performance.\nTo give my best complete final
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\nFinal Answer: Your final answer must be the great and
the most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent Task:
Based on the task description and the expected output, compare and evaluate
the performance of the agents in the crew based on the Task Output they have
performed using score from 1 to 10 evaluating on completion, quality, and overall
performance.task_description: Just say hi task_expected_output: hi agent: base_agent
agent_goal: Just say hi Task Output: hi\n\nThis is the expected criteria for
your final answer: Evaluation Score from 1 to 10 based on the performance of
the agents on the tasks\nyou MUST return the actual complete content as the
final answer, not a summary.\nEnsure your final answer contains only the content
in the following format: {\n \"quality\": float\n}\n\nEnsure the final output
does not include any code block markers like ```json or ```python.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop":
["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1765'
content-type:
- application/json
cookie:
- __cf_bm=lvRw4Nyef7N35to64fj2_kHDfbZp0KSFbwgF5chYMRI-1740415557-1.0.1.1-o5BaN1FpBwv5Wq6zIlv0rCB28lk5hVI9wZQWU3pig1jgyAKDkYzTwZ0MlSR6v6TPIX9RfepjrO3.Gk3FEmcVRw;
_cfuvid=ySaVoTQvAcQyH5QoJQJDj75e5j8HwGFPOlFMAWEvXJk-1740415557302-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-B4Vsbd9AsRaJ2exDtWnHAwC8rIjfi\",\n \"object\":
\"chat.completion\",\n \"created\": 1740415557,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: { \\n \\\"quality\\\": 10 \\n} \",\n \"refusal\": null\n
\ },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n
\ ],\n \"usage\": {\n \"prompt_tokens\": 338,\n \"completion_tokens\":
22,\n \"total_tokens\": 360,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_7fcd609668\"\n}\n"
headers:
CF-RAY:
- 9170edd15bb5230e-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 24 Feb 2025 16:45:58 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '860'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999578'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_fad452c2d10b5fc95809130912b08837
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -0,0 +1,103 @@
interactions:
- request:
body: '{"messages": [{"role": "user", "content": "Hello, how are you?"}], "model":
"gpt-4o-mini", "stop": []}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '102'
content-type:
- application/json
cookie:
- _cfuvid=IY8ppO70AMHr2skDSUsGh71zqHHdCQCZ3OvkPi26NBc-1740424913267-0.0.1.1-604800000;
__cf_bm=fU6K5KZoDmgcEuF8_yWAYKUO5fKHh6q5.wDPnna393g-1740424913-1.0.1.1-2iOaq3JVGWs439V0HxJee0IC9HdJm7dPkeJorD.AGw0YwkngRPM8rrTzn_7ht1BkbOauEezj.wPKcBz18gIYUg
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-B4YLA2SrC2rwdVQ3U87G5a0P5lsLw\",\n \"object\":
\"chat.completion\",\n \"created\": 1740425016,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Hello! I'm just a computer program, so
I don't have feelings, but I'm here and ready to help you. How can I assist
you today?\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
13,\n \"completion_tokens\": 30,\n \"total_tokens\": 43,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_709714d124\"\n}\n"
headers:
CF-RAY:
- 9171d4c0ed44236e-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 24 Feb 2025 19:23:38 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '1954'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999978'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_ea2703502b8827e4297cd2a7bae9d9c8
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -0,0 +1,108 @@
interactions:
- request:
body: '{"messages": [{"role": "user", "content": "Hello, how are you?"}], "model":
"gpt-4o-mini", "stop": []}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '102'
content-type:
- application/json
cookie:
- _cfuvid=GefCcEtb_Gem93E4a9Hvt3Xyof1YQZVJAXBb9I6pEUs-1739398417375-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-B4YJU8IWKGyBQtAyPDRd3SFI2flYR\",\n \"object\":
\"chat.completion\",\n \"created\": 1740424912,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Hello! I'm just a computer program, so
I don't have feelings, but I'm here and ready to help you. How can I assist
you today?\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
13,\n \"completion_tokens\": 30,\n \"total_tokens\": 43,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_7fcd609668\"\n}\n"
headers:
CF-RAY:
- 9171d230d8ed7ae0-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 24 Feb 2025 19:21:53 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=fU6K5KZoDmgcEuF8_yWAYKUO5fKHh6q5.wDPnna393g-1740424913-1.0.1.1-2iOaq3JVGWs439V0HxJee0IC9HdJm7dPkeJorD.AGw0YwkngRPM8rrTzn_7ht1BkbOauEezj.wPKcBz18gIYUg;
path=/; expires=Mon, 24-Feb-25 19:51:53 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=IY8ppO70AMHr2skDSUsGh71zqHHdCQCZ3OvkPi26NBc-1740424913267-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '993'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999978'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_d9c4d49185e97b1797061efc1e55d811
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -1,6 +1,5 @@
import json
from datetime import datetime
from unittest.mock import MagicMock, patch
from unittest.mock import Mock, patch
import pytest
from pydantic import Field
@@ -9,9 +8,9 @@ from crewai.agent import Agent
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.crew import Crew
from crewai.flow.flow import Flow, listen, start
from crewai.llm import LLM
from crewai.task import Task
from crewai.tools.base_tool import BaseTool
from crewai.tools.tool_usage import ToolUsage
from crewai.utilities.events.agent_events import (
AgentExecutionCompletedEvent,
AgentExecutionErrorEvent,
@@ -21,8 +20,11 @@ from crewai.utilities.events.crew_events import (
CrewKickoffCompletedEvent,
CrewKickoffFailedEvent,
CrewKickoffStartedEvent,
CrewTestCompletedEvent,
CrewTestStartedEvent,
)
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.events.event_listener import EventListener
from crewai.utilities.events.event_types import ToolUsageFinishedEvent
from crewai.utilities.events.flow_events import (
FlowCreatedEvent,
@@ -31,6 +33,12 @@ from crewai.utilities.events.flow_events import (
MethodExecutionFailedEvent,
MethodExecutionStartedEvent,
)
from crewai.utilities.events.llm_events import (
LLMCallCompletedEvent,
LLMCallFailedEvent,
LLMCallStartedEvent,
LLMCallType,
)
from crewai.utilities.events.task_events import (
TaskCompletedEvent,
TaskFailedEvent,
@@ -52,26 +60,35 @@ base_task = Task(
expected_output="hi",
agent=base_agent,
)
event_listener = EventListener()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_emits_start_kickoff_event():
received_events = []
mock_span = Mock()
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(CrewKickoffStartedEvent)
def handle_crew_start(source, event):
received_events.append(event)
crew = Crew(agents=[base_agent], tasks=[base_task], name="TestCrew")
@crewai_event_bus.on(CrewKickoffStartedEvent)
def handle_crew_start(source, event):
received_events.append(event)
crew = Crew(agents=[base_agent], tasks=[base_task], name="TestCrew")
with (
patch.object(
event_listener._telemetry, "crew_execution_span", return_value=mock_span
) as mock_crew_execution_span,
patch.object(
event_listener._telemetry, "end_crew", return_value=mock_span
) as mock_crew_ended,
):
crew.kickoff()
mock_crew_execution_span.assert_called_once_with(crew, None)
mock_crew_ended.assert_called_once_with(crew, "hi")
assert len(received_events) == 1
assert received_events[0].crew_name == "TestCrew"
assert isinstance(received_events[0].timestamp, datetime)
assert received_events[0].type == "crew_kickoff_started"
assert len(received_events) == 1
assert received_events[0].crew_name == "TestCrew"
assert isinstance(received_events[0].timestamp, datetime)
assert received_events[0].type == "crew_kickoff_started"
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -92,6 +109,45 @@ def test_crew_emits_end_kickoff_event():
assert received_events[0].type == "crew_kickoff_completed"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_emits_test_kickoff_type_event():
received_events = []
mock_span = Mock()
@crewai_event_bus.on(CrewTestStartedEvent)
def handle_crew_end(source, event):
received_events.append(event)
@crewai_event_bus.on(CrewTestCompletedEvent)
def handle_crew_test_end(source, event):
received_events.append(event)
eval_llm = LLM(model="gpt-4o-mini")
with (
patch.object(
event_listener._telemetry, "test_execution_span", return_value=mock_span
) as mock_crew_execution_span,
):
crew = Crew(agents=[base_agent], tasks=[base_task], name="TestCrew")
crew.test(n_iterations=1, eval_llm=eval_llm)
# Verify the call was made with correct argument types and values
assert mock_crew_execution_span.call_count == 1
args = mock_crew_execution_span.call_args[0]
assert isinstance(args[0], Crew)
assert args[1] == 1
assert args[2] is None
assert args[3] == eval_llm
assert len(received_events) == 2
assert received_events[0].crew_name == "TestCrew"
assert isinstance(received_events[0].timestamp, datetime)
assert received_events[0].type == "crew_test_started"
assert received_events[1].crew_name == "TestCrew"
assert isinstance(received_events[1].timestamp, datetime)
assert received_events[1].type == "crew_test_completed"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_emits_kickoff_failed_event():
received_events = []
@@ -142,9 +198,20 @@ def test_crew_emits_end_task_event():
def handle_task_end(source, event):
received_events.append(event)
mock_span = Mock()
crew = Crew(agents=[base_agent], tasks=[base_task], name="TestCrew")
with (
patch.object(
event_listener._telemetry, "task_started", return_value=mock_span
) as mock_task_started,
patch.object(
event_listener._telemetry, "task_ended", return_value=mock_span
) as mock_task_ended,
):
crew.kickoff()
crew.kickoff()
mock_task_started.assert_called_once_with(crew=crew, task=base_task)
mock_task_ended.assert_called_once_with(mock_span, base_task, crew)
assert len(received_events) == 1
assert isinstance(received_events[0].timestamp, datetime)
@@ -334,24 +401,29 @@ def test_tools_emits_error_events():
def test_flow_emits_start_event():
received_events = []
mock_span = Mock()
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(FlowStartedEvent)
def handle_flow_start(source, event):
received_events.append(event)
@crewai_event_bus.on(FlowStartedEvent)
def handle_flow_start(source, event):
received_events.append(event)
class TestFlow(Flow[dict]):
@start()
def begin(self):
return "started"
class TestFlow(Flow[dict]):
@start()
def begin(self):
return "started"
with (
patch.object(
event_listener._telemetry, "flow_execution_span", return_value=mock_span
) as mock_flow_execution_span,
):
flow = TestFlow()
flow.kickoff()
assert len(received_events) == 1
assert received_events[0].flow_name == "TestFlow"
assert received_events[0].type == "flow_started"
mock_flow_execution_span.assert_called_once_with("TestFlow", ["begin"])
assert len(received_events) == 1
assert received_events[0].flow_name == "TestFlow"
assert received_events[0].type == "flow_started"
def test_flow_emits_finish_event():
@@ -455,6 +527,7 @@ def test_multiple_handlers_for_same_event():
def test_flow_emits_created_event():
received_events = []
mock_span = Mock()
@crewai_event_bus.on(FlowCreatedEvent)
def handle_flow_created(source, event):
@@ -465,8 +538,15 @@ def test_flow_emits_created_event():
def begin(self):
return "started"
flow = TestFlow()
flow.kickoff()
with (
patch.object(
event_listener._telemetry, "flow_creation_span", return_value=mock_span
) as mock_flow_creation_span,
):
flow = TestFlow()
flow.kickoff()
mock_flow_creation_span.assert_called_once_with("TestFlow")
assert len(received_events) == 1
assert received_events[0].flow_name == "TestFlow"
@@ -495,3 +575,43 @@ def test_flow_emits_method_execution_failed_event():
assert received_events[0].flow_name == "TestFlow"
assert received_events[0].type == "method_execution_failed"
assert received_events[0].error == error
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_emits_call_started_event():
received_events = []
@crewai_event_bus.on(LLMCallStartedEvent)
def handle_llm_call_started(source, event):
received_events.append(event)
@crewai_event_bus.on(LLMCallCompletedEvent)
def handle_llm_call_completed(source, event):
received_events.append(event)
llm = LLM(model="gpt-4o-mini")
llm.call("Hello, how are you?")
assert len(received_events) == 2
assert received_events[0].type == "llm_call_started"
assert received_events[1].type == "llm_call_completed"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_emits_call_failed_event():
received_events = []
@crewai_event_bus.on(LLMCallFailedEvent)
def handle_llm_call_failed(source, event):
received_events.append(event)
error_message = "Simulated LLM call failure"
with patch("crewai.llm.litellm.completion", side_effect=Exception(error_message)):
llm = LLM(model="gpt-4o-mini")
with pytest.raises(Exception) as exc_info:
llm.call("Hello, how are you?")
assert str(exc_info.value) == error_message
assert len(received_events) == 1
assert received_events[0].type == "llm_call_failed"
assert received_events[0].error == error_message