Merge branch 'main' into feature/procedure_v2

This commit is contained in:
Brandon Hancock
2024-07-16 10:34:55 -04:00
32 changed files with 8970 additions and 1792 deletions

View File

@@ -1,6 +1,7 @@
import uuid
from abc import ABC, abstractmethod
from copy import copy as shallow_copy
from hashlib import md5
from typing import Any, Dict, List, Optional, TypeVar
from pydantic import (
@@ -162,6 +163,11 @@ class BaseAgent(ABC, BaseModel):
self._token_process = TokenProcess()
return self
@property
def key(self):
source = [self.role, self.goal, self.backstory]
return md5("|".join(source).encode()).hexdigest()
@abstractmethod
def execute_task(
self,
@@ -180,7 +186,7 @@ class BaseAgent(ABC, BaseModel):
pass
@abstractmethod
def get_delegation_tools(self, agents: List["BaseAgent"]):
def get_delegation_tools(self, agents: List["BaseAgent"]) -> List[Any]:
"""Set the task tools that init BaseAgenTools class."""
pass

View File

@@ -1,8 +1,14 @@
import click
import pkg_resources
from crewai.memory.storage.kickoff_task_outputs_storage import (
KickoffTaskOutputsSQLiteStorage,
)
from .create_crew import create_crew
from .train_crew import train_crew
from .replay_from_task import replay_task_command
@click.group()
@@ -48,5 +54,50 @@ def train(n_iterations: int):
train_crew(n_iterations)
@crewai.command()
@click.option(
"-t",
"--task_id",
type=str,
help="Replay the crew from this task ID, including all subsequent tasks.",
)
def replay(task_id: str) -> None:
"""
Replay the crew execution from a specific task.
Args:
task_id (str): The ID of the task to replay from.
"""
try:
click.echo(f"Replaying the crew from task {task_id}")
replay_task_command(task_id)
except Exception as e:
click.echo(f"An error occurred while replaying: {e}", err=True)
@crewai.command()
def log_tasks_outputs() -> None:
"""
Retrieve your latest crew.kickoff() task outputs.
"""
try:
storage = KickoffTaskOutputsSQLiteStorage()
tasks = storage.load()
if not tasks:
click.echo(
"No task outputs found. Only crew kickoff task outputs are logged."
)
return
for index, task in enumerate(tasks, 1):
click.echo(f"Task {index}: {task['task_id']}")
click.echo(f"Description: {task['expected_output']}")
click.echo("------")
except Exception as e:
click.echo(f"An error occurred while logging task outputs: {e}", err=True)
if __name__ == "__main__":
crewai()

View File

@@ -0,0 +1,24 @@
import subprocess
import click
def replay_task_command(task_id: str) -> None:
"""
Replay the crew execution from a specific task.
Args:
task_id (str): The ID of the task to replay from.
"""
command = ["poetry", "run", "replay", task_id]
try:
result = subprocess.run(command, capture_output=False, text=True, check=True)
if result.stderr:
click.echo(result.stderr, err=True)
except subprocess.CalledProcessError as e:
click.echo(f"An error occurred while replaying the task: {e}", err=True)
click.echo(e.output, err=True)
except Exception as e:
click.echo(f"An unexpected error occurred: {e}", err=True)

View File

@@ -21,3 +21,13 @@ def train():
except Exception as e:
raise Exception(f"An error occurred while training the crew: {e}")
def replay_from_task():
"""
Replay the crew execution from a specific task.
"""
try:
{{crew_name}}Crew().crew().replay_from_task(task_id=sys.argv[1])
except Exception as e:
raise Exception(f"An error occurred while replaying the crew: {e}")

View File

@@ -11,6 +11,7 @@ crewai = { extras = ["tools"], version = "^0.35.8" }
[tool.poetry.scripts]
{{folder_name}} = "{{folder_name}}.main:run"
train = "{{folder_name}}.main:train"
replay = "{{folder_name}}.main:replay_from_task"
[build-system]
requires = ["poetry-core"]

View File

@@ -2,6 +2,7 @@ import asyncio
import json
import uuid
from concurrent.futures import Future
from hashlib import md5
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
from langchain_core.callbacks import BaseCallbackHandler
@@ -33,14 +34,14 @@ from crewai.tools.agent_tools import AgentTools
from crewai.utilities import I18N, FileHandler, Logger, RPMController
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
from crewai.utilities.formatter import (
aggregate_raw_outputs_from_task_outputs,
aggregate_raw_outputs_from_tasks,
from crewai.utilities.formatter import (
aggregate_raw_outputs_from_task_outputs,
aggregate_raw_outputs_from_tasks,
)
from crewai.utilities.training_handler import CrewTrainingHandler
try:
import agentops
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
except ImportError:
agentops = None
@@ -83,6 +84,13 @@ class Crew(BaseModel):
_entity_memory: Optional[InstanceOf[EntityMemory]] = PrivateAttr()
_train: Optional[bool] = PrivateAttr(default=False)
_train_iteration: Optional[int] = PrivateAttr()
_inputs: Optional[Dict[str, Any]] = PrivateAttr(default=None)
_logging_color: str = PrivateAttr(
default="bold_purple",
)
_task_output_handler: TaskOutputStorageHandler = PrivateAttr(
default_factory=TaskOutputStorageHandler
)
cache: bool = Field(default=True)
model_config = ConfigDict(arbitrary_types_allowed=True)
@@ -138,6 +146,14 @@ class Crew(BaseModel):
default="",
description="output_log_file",
)
task_execution_output_json_files: Optional[List[str]] = Field(
default=None,
description="List of file paths for task execution JSON files.",
)
execution_logs: List[Dict[str, Any]] = Field(
default=[],
description="List of execution logs for tasks",
)
@field_validator("id", mode="before")
@classmethod
@@ -313,6 +329,13 @@ class Crew(BaseModel):
)
return self
@property
def key(self) -> str:
source = [agent.key for agent in self.agents] + [
task.key for task in self.tasks
]
return md5("|".join(source).encode()).hexdigest()
def _setup_from_config(self):
assert self.config is not None, "Config should not be None."
@@ -379,7 +402,11 @@ class Crew(BaseModel):
) -> CrewOutput:
"""Starts the crew to work on its assigned tasks."""
self._execution_span = self._telemetry.crew_execution_span(self, inputs)
self._task_output_handler.reset()
self._logging_color = "bold_purple"
if inputs is not None:
self._inputs = inputs
self._interpolate_inputs(inputs)
self._set_tasks_callbacks()
@@ -406,7 +433,7 @@ class Crew(BaseModel):
if self.process == Process.sequential:
result = self._run_sequential_process()
elif self.process == Process.hierarchical:
result = self._run_hierarchical_process() # type: ignore # Incompatible types in assignment (expression has type "str | dict[str, Any]", variable has type "str")
result = self._run_hierarchical_process()
else:
raise NotImplementedError(
f"The process '{self.process}' is not implemented yet."
@@ -443,6 +470,7 @@ class Crew(BaseModel):
results.append(output)
self.usage_metrics = total_usage_metrics
self._task_output_handler.reset()
return results
async def kickoff_async(self, inputs: Optional[Dict[str, Any]] = {}) -> CrewOutput:
@@ -491,129 +519,48 @@ class Crew(BaseModel):
total_usage_metrics[key] += crew.usage_metrics.get(key, 0)
self.usage_metrics = total_usage_metrics
self._task_output_handler.reset()
return results
def _store_execution_log(
self,
task: Task,
output: TaskOutput,
task_index: int,
was_replayed: bool = False,
):
if self._inputs:
inputs = self._inputs
else:
inputs = {}
log = {
"task": task,
"output": {
"description": output.description,
"summary": output.summary,
"raw": output.raw,
"pydantic": output.pydantic,
"json_dict": output.json_dict,
"output_format": output.output_format,
"agent": output.agent,
},
"task_index": task_index,
"inputs": inputs,
"was_replayed": was_replayed,
}
self._task_output_handler.update(task_index, log)
def _run_sequential_process(self) -> CrewOutput:
"""Executes tasks sequentially and returns the final output."""
task_outputs: List[TaskOutput] = []
futures: List[Tuple[Task, Future[TaskOutput]]] = []
return self._execute_tasks(self.tasks)
for task in self.tasks:
if task.agent and task.agent.allow_delegation:
agents_for_delegation = [
agent for agent in self.agents if agent != task.agent
]
if len(self.agents) > 1 and len(agents_for_delegation) > 0:
delegation_tools = task.agent.get_delegation_tools(
agents_for_delegation
)
# Add tools if they are not already in task.tools
for new_tool in delegation_tools:
# Find the index of the tool with the same name
existing_tool_index = next(
(
index
for index, tool in enumerate(task.tools or [])
if tool.name == new_tool.name
),
None,
)
if not task.tools:
task.tools = []
if existing_tool_index is not None:
# Replace the existing tool
task.tools[existing_tool_index] = new_tool
else:
# Add the new tool
task.tools.append(new_tool)
role = task.agent.role if task.agent is not None else "None"
self._logger.log("debug", f"== Working Agent: {role}", color="bold_purple")
self._logger.log(
"info", f"== Starting Task: {task.description}", color="bold_purple"
)
if self.output_log_file:
self._file_handler.log(
agent=role, task=task.description, status="started"
)
if task.async_execution:
context = (
aggregate_raw_outputs_from_tasks(task.context)
if task.context
else aggregate_raw_outputs_from_task_outputs(task_outputs)
)
future = task.execute_async(
agent=task.agent, context=context, tools=task.tools
)
futures.append((task, future))
else:
# Before executing a synchronous task, wait for all async tasks to complete
if futures:
# Clear task_outputs before processing async tasks
task_outputs = []
for future_task, future in futures:
task_output = future.result()
task_outputs.append(task_output)
self._process_task_result(future_task, task_output)
# Clear the futures list after processing all async results
futures.clear()
context = (
aggregate_raw_outputs_from_tasks(task.context)
if task.context
else aggregate_raw_outputs_from_task_outputs(task_outputs)
)
task_output = task.execute_sync(
agent=task.agent, context=context, tools=task.tools
)
task_outputs = [task_output]
self._process_task_result(task, task_output)
if futures:
# Clear task_outputs before processing async tasks
task_outputs = []
for future_task, future in futures:
task_output = future.result()
task_outputs.append(task_output)
self._process_task_result(future_task, task_output)
# Important: There should only be one task output in the list
# If there are more or 0, something went wrong.
if len(task_outputs) != 1:
raise ValueError(
"Something went wrong. Kickoff should return only one task output."
)
final_task_output = task_outputs[0]
final_string_output = final_task_output.raw
self._finish_execution(final_string_output)
token_usage = self.calculate_usage_metrics()
return CrewOutput(
raw=final_task_output.raw,
pydantic=final_task_output.pydantic,
json_dict=final_task_output.json_dict,
tasks_output=[task.output for task in self.tasks if task.output],
token_usage=token_usage,
)
def _process_task_result(self, task: Task, output: TaskOutput) -> None:
role = task.agent.role if task.agent is not None else "None"
self._logger.log("debug", f"== [{role}] Task output: {output}\n\n")
if self.output_log_file:
self._file_handler.log(agent=role, task=output, status="completed")
# TODO: @joao, Breaking change. Changed return type. Usage metrics is included in crewoutput
def _run_hierarchical_process(self) -> CrewOutput:
"""Creates and assigns a manager agent to make sure the crew completes the tasks."""
self._create_manager_agent()
return self._execute_tasks(self.tasks, self.manager_agent)
def _create_manager_agent(self):
i18n = I18N(prompt_file=self.prompt_file)
if self.manager_agent is not None:
self.manager_agent.allow_delegation = True
@@ -632,74 +579,148 @@ class Crew(BaseModel):
)
self.manager_agent = manager
def _execute_tasks(
self,
tasks: List[Task],
manager: Optional[BaseAgent] = None,
start_index: Optional[int] = 0,
was_replayed: bool = False,
) -> CrewOutput:
"""Executes tasks sequentially and returns the final output.
Args:
tasks (List[Task]): List of tasks to execute
manager (Optional[BaseAgent], optional): Manager agent to use for delegation. Defaults to None.
Returns:
CrewOutput: Final output of the crew
"""
task_outputs: List[TaskOutput] = []
futures: List[Tuple[Task, Future[TaskOutput]]] = []
futures: List[Tuple[Task, Future[TaskOutput], int]] = []
last_sync_output: Optional[TaskOutput] = None
# TODO: IF USER OVERRIDE THE CONTEXT, PASS THAT
for task in self.tasks:
self._logger.log("debug", f"Working Agent: {manager.role}")
self._logger.log("info", f"Starting Task: {task.description}")
for task_index, task in enumerate(tasks):
if start_index is not None and task_index < start_index:
if task.output:
if task.async_execution:
task_outputs.append(task.output)
else:
task_outputs = [task.output]
last_sync_output = task.output
continue
if self.output_log_file:
self._file_handler.log(
agent=manager.role, task=task.description, status="started"
self._prepare_task(task, manager)
if self.process == Process.hierarchical:
agent_to_use = manager
else:
agent_to_use = task.agent
if agent_to_use is None:
raise ValueError(
f"No agent available for task: {task.description}. Ensure that either the task has an assigned agent or a manager agent is provided."
)
self._log_task_start(task, agent_to_use)
if task.async_execution:
context = (
aggregate_raw_outputs_from_tasks(task.context)
if task.context
else aggregate_raw_outputs_from_task_outputs(task_outputs)
context = self._get_context(
task, [last_sync_output] if last_sync_output else []
)
future = task.execute_async(
agent=manager, context=context, tools=manager.tools
agent=agent_to_use,
context=context,
tools=agent_to_use.tools,
)
futures.append((task, future))
futures.append((task, future, task_index))
else:
# Before executing a synchronous task, wait for all async tasks to complete
if futures:
# Clear task_outputs before processing async tasks
task_outputs = []
for future_task, future in futures:
task_output = future.result()
task_outputs.append(task_output)
self._process_task_result(future_task, task_output)
# Clear the futures list after processing all async results
task_outputs.extend(
self._process_async_tasks(futures, was_replayed)
)
futures.clear()
context = (
aggregate_raw_outputs_from_tasks(task.context)
if task.context
else aggregate_raw_outputs_from_task_outputs(task_outputs)
)
context = self._get_context(task, task_outputs)
task_output = task.execute_sync(
agent=manager, context=context, tools=manager.tools
agent=agent_to_use,
context=context,
tools=agent_to_use.tools,
)
task_outputs = [task_output]
self._process_task_result(task, task_output)
self._store_execution_log(task, task_output, task_index, was_replayed)
# Process any remaining async results
if futures:
# Clear task_outputs before processing async tasks
task_outputs = []
for future_task, future in futures:
task_output = future.result()
task_outputs.append(task_output)
self._process_task_result(future_task, task_output)
task_outputs = self._process_async_tasks(futures, was_replayed)
# Important: There should only be one task output in the list
# If there are more or 0, something went wrong.
return self._create_crew_output(task_outputs)
def _prepare_task(self, task: Task, manager: Optional[BaseAgent]):
if self.process == Process.hierarchical:
self._update_manager_tools(task, manager)
elif task.agent and task.agent.allow_delegation:
self._add_delegation_tools(task)
def _add_delegation_tools(self, task: Task):
agents_for_delegation = [agent for agent in self.agents if agent != task.agent]
if len(self.agents) > 1 and len(agents_for_delegation) > 0 and task.agent:
delegation_tools = task.agent.get_delegation_tools(agents_for_delegation)
# Add tools if they are not already in task.tools
for new_tool in delegation_tools:
# Find the index of the tool with the same name
existing_tool_index = next(
(
index
for index, tool in enumerate(task.tools or [])
if tool.name == new_tool.name
),
None,
)
if not task.tools:
task.tools = []
if existing_tool_index is not None:
# Replace the existing tool
task.tools[existing_tool_index] = new_tool
else:
# Add the new tool
task.tools.append(new_tool)
def _log_task_start(self, task: Task, agent: Optional[BaseAgent]):
color = self._logging_color
role = agent.role if agent else "None"
self._logger.log("debug", f"== Working Agent: {role}", color=color)
self._logger.log("info", f"== Starting Task: {task.description}", color=color)
if self.output_log_file:
self._file_handler.log(agent=role, task=task.description, status="started")
def _update_manager_tools(self, task: Task, manager: Optional[BaseAgent]):
if task.agent and manager:
manager.tools = task.agent.get_delegation_tools([task.agent])
if manager:
manager.tools = manager.get_delegation_tools(self.agents)
def _get_context(self, task: Task, task_outputs: List[TaskOutput]):
context = (
aggregate_raw_outputs_from_tasks(task.context)
if task.context
else aggregate_raw_outputs_from_task_outputs(task_outputs)
)
return context
def _process_task_result(self, task: Task, output: TaskOutput) -> None:
role = task.agent.role if task.agent is not None else "None"
self._logger.log("debug", f"== [{role}] Task output: {output}\n\n")
if self.output_log_file:
self._file_handler.log(agent=role, task=output, status="completed")
def _create_crew_output(self, task_outputs: List[TaskOutput]) -> CrewOutput:
if len(task_outputs) != 1:
raise ValueError(
"Something went wrong. Kickoff should return only one task output."
)
final_task_output = task_outputs[0]
final_string_output = final_task_output.raw
self._finish_execution(final_string_output)
token_usage = self.calculate_usage_metrics()
return CrewOutput(
@@ -710,6 +731,74 @@ class Crew(BaseModel):
token_usage=token_usage,
)
def _process_async_tasks(
self,
futures: List[Tuple[Task, Future[TaskOutput], int]],
was_replayed: bool = False,
) -> List[TaskOutput]:
task_outputs = []
for future_task, future, task_index in futures:
task_output = future.result()
task_outputs.append(task_output)
self._process_task_result(future_task, task_output)
self._store_execution_log(
future_task, task_output, task_index, was_replayed
)
return task_outputs
def _find_task_index(
self, task_id: str, stored_outputs: List[Any]
) -> Optional[int]:
return next(
(
index
for (index, d) in enumerate(stored_outputs)
if d["task_id"] == str(task_id)
),
None,
)
def replay_from_task(
self, task_id: str, inputs: Optional[Dict[str, Any]] = None
) -> CrewOutput:
stored_outputs = self._task_output_handler.load()
if not stored_outputs:
raise ValueError(f"Task with id {task_id} not found in the crew's tasks.")
start_index = self._find_task_index(task_id, stored_outputs)
if start_index is None:
raise ValueError(f"Task with id {task_id} not found in the crew's tasks.")
replay_inputs = (
inputs if inputs is not None else stored_outputs[start_index]["inputs"]
)
self._inputs = replay_inputs
if replay_inputs:
self._interpolate_inputs(replay_inputs)
if self.process == Process.hierarchical:
self._create_manager_agent()
for i in range(start_index):
stored_output = stored_outputs[i][
"output"
] # for adding context to the task
task_output = TaskOutput(
description=stored_output["description"],
agent=stored_output["agent"],
raw=stored_output["raw"],
pydantic=stored_output["pydantic"],
json_dict=stored_output["json_dict"],
output_format=stored_output["output_format"],
)
self.tasks[i].output = task_output
self._logging_color = "bold_blue"
result = self._execute_tasks(self.tasks, self.manager_agent, start_index, True)
return result
def copy(self):
"""Create a deep copy of the Crew."""

View File

@@ -34,14 +34,16 @@ class CrewOutput(BaseModel):
return json.dumps(self.json_dict)
def to_dict(self) -> Dict[str, Any]:
"""Convert json_output and pydantic_output to a dictionary."""
print("Crew Output RAW", self.raw)
print("Crew Output JSON", self.json_dict)
print("Crew Output Pydantic", self.pydantic)
output_dict = {}
if self.json_dict:
return self.json_dict
if self.pydantic:
return self.pydantic.model_dump()
raise ValueError("No output to convert to dictionary")
output_dict.update(self.json_dict)
elif self.pydantic:
output_dict.update(self.pydantic.model_dump())
return output_dict
def __str__(self):
if self.pydantic:

View File

@@ -0,0 +1,166 @@
import json
import sqlite3
from typing import Any, Dict, List, Optional
from crewai.task import Task
from crewai.utilities import Printer
from crewai.utilities.crew_json_encoder import CrewJSONEncoder
from crewai.utilities.paths import db_storage_path
class KickoffTaskOutputsSQLiteStorage:
"""
An updated SQLite storage class for kickoff task outputs storage.
"""
def __init__(
self, db_path: str = f"{db_storage_path()}/latest_kickoff_task_outputs.db"
) -> None:
self.db_path = db_path
self._printer: Printer = Printer()
self._initialize_db()
def _initialize_db(self):
"""
Initializes the SQLite database and creates LTM table
"""
try:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute(
"""
CREATE TABLE IF NOT EXISTS latest_kickoff_task_outputs (
task_id TEXT PRIMARY KEY,
expected_output TEXT,
output JSON,
task_index INTEGER,
inputs JSON,
was_replayed BOOLEAN,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
)
"""
)
conn.commit()
except sqlite3.Error as e:
self._printer.print(
content=f"SAVING KICKOFF TASK OUTPUTS ERROR: An error occurred during database initialization: {e}",
color="red",
)
def add(
self,
task: Task,
output: Dict[str, Any],
task_index: int,
was_replayed: bool = False,
inputs: Dict[str, Any] = {},
):
try:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute(
"""
INSERT OR REPLACE INTO latest_kickoff_task_outputs
(task_id, expected_output, output, task_index, inputs, was_replayed)
VALUES (?, ?, ?, ?, ?, ?)
""",
(
str(task.id),
task.expected_output,
json.dumps(output, cls=CrewJSONEncoder),
task_index,
json.dumps(inputs),
was_replayed,
),
)
conn.commit()
except sqlite3.Error as e:
self._printer.print(
content=f"SAVING KICKOFF TASK OUTPUTS ERROR: An error occurred during database initialization: {e}",
color="red",
)
def update(
self,
task_index: int,
**kwargs,
):
"""
Updates an existing row in the latest_kickoff_task_outputs table based on task_index.
"""
try:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
fields = []
values = []
for key, value in kwargs.items():
fields.append(f"{key} = ?")
values.append(
json.dumps(value, cls=CrewJSONEncoder)
if isinstance(value, dict)
else value
)
query = f"UPDATE latest_kickoff_task_outputs SET {', '.join(fields)} WHERE task_index = ?"
values.append(task_index)
cursor.execute(query, tuple(values))
conn.commit()
if cursor.rowcount == 0:
self._printer.print(
f"No row found with task_index {task_index}. No update performed.",
color="red",
)
except sqlite3.Error as e:
self._printer.print(f"UPDATE KICKOFF TASK OUTPUTS ERROR: {e}", color="red")
def load(self) -> Optional[List[Dict[str, Any]]]:
try:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute("""
SELECT *
FROM latest_kickoff_task_outputs
ORDER BY task_index
""")
rows = cursor.fetchall()
results = []
for row in rows:
result = {
"task_id": row[0],
"expected_output": row[1],
"output": json.loads(row[2]),
"task_index": row[3],
"inputs": json.loads(row[4]),
"was_replayed": row[5],
"timestamp": row[6],
}
results.append(result)
return results
except sqlite3.Error as e:
self._printer.print(
content=f"LOADING KICKOFF TASK OUTPUTS ERROR: An error occurred while querying kickoff task outputs: {e}",
color="red",
)
return None
def delete_all(self):
"""
Deletes all rows from the latest_kickoff_task_outputs table.
"""
try:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute("DELETE FROM latest_kickoff_task_outputs")
conn.commit()
except sqlite3.Error as e:
self._printer.print(
content=f"ERROR: Failed to delete all kickoff task outputs: {e}",
color="red",
)

View File

@@ -5,8 +5,10 @@ import threading
import uuid
from concurrent.futures import Future
from copy import copy
from hashlib import md5
from typing import Any, Dict, List, Optional, Tuple, Type, Union
from langchain_openai import ChatOpenAI
from opentelemetry.trace import Span
from pydantic import UUID4, BaseModel, Field, field_validator, model_validator
@@ -173,6 +175,14 @@ class Task(BaseModel):
"""Execute the task synchronously."""
return self._execute_core(agent, context, tools)
@property
def key(self) -> str:
description = self._original_description or self.description
expected_output = self._original_expected_output or self.expected_output
source = [description, expected_output]
return md5("|".join(source).encode()).hexdigest()
def execute_async(
self,
agent: BaseAgent | None = None,
@@ -204,6 +214,7 @@ class Task(BaseModel):
tools: Optional[List[Any]],
) -> TaskOutput:
"""Run the core execution logic of the task."""
self.agent = agent
agent = agent or self.agent
if not agent:
raise Exception(
@@ -237,14 +248,16 @@ class Task(BaseModel):
self.callback(self.output)
if self._execution_span:
self._telemetry.task_ended(self._execution_span, self)
self._telemetry.task_ended(self._execution_span, self, agent.crew)
self._execution_span = None
if self.output_file:
content = (
json_output
if json_output
else pydantic_output.model_dump_json() if pydantic_output else result
else pydantic_output.model_dump_json()
if pydantic_output
else result
)
self._save_file(content)
@@ -378,7 +391,7 @@ class Task(BaseModel):
def _convert_with_instructions(
self, result: str, model: Type[BaseModel]
) -> Union[dict, BaseModel, str]:
llm = self.agent.function_calling_llm or self.agent.llm
llm = self.agent.function_calling_llm or self.agent.llm # type: ignore # Item "None" of "BaseAgent | None" has no attribute "function_calling_llm"
instructions = self._get_conversion_instructions(model, llm)
converter = self._create_converter(

View File

@@ -11,9 +11,7 @@ class TaskOutput(BaseModel):
description: str = Field(description="Description of the task")
summary: Optional[str] = Field(description="Summary of the task", default=None)
raw: str = Field(
description="Raw output of the task", default=""
) # TODO: @joao: breaking change, by renaming raw_output to raw, but now consistent with CrewOutput
raw: str = Field(description="Raw output of the task", default="")
pydantic: Optional[BaseModel] = Field(
description="Pydantic output of task", default=None
)
@@ -32,22 +30,6 @@ class TaskOutput(BaseModel):
self.summary = f"{excerpt}..."
return self
# TODO: Joao - Adding this safety check breakes when people want to see
# The full output of a TaskOutput or CrewOutput.
# @property
# def pydantic(self) -> Optional[BaseModel]:
# # Check if the final task output included a pydantic model
# if self.output_format != OutputFormat.PYDANTIC:
# raise ValueError(
# """
# Invalid output format requested.
# If you would like to access the pydantic model,
# please make sure to set the output_pydantic property for the task.
# """
# )
# return self._pydantic
@property
def json(self) -> Optional[str]:
if self.output_format != OutputFormat.JSON:
@@ -66,7 +48,7 @@ class TaskOutput(BaseModel):
output_dict = {}
if self.json_dict:
output_dict.update(self.json_dict)
if self.pydantic:
elif self.pydantic:
output_dict.update(self.pydantic.model_dump())
return output_dict

View File

@@ -92,13 +92,8 @@ class Telemetry:
pkg_resources.get_distribution("crewai").version,
)
self._add_attribute(span, "python_version", platform.python_version())
self._add_attribute(span, "crew_key", crew.key)
self._add_attribute(span, "crew_id", str(crew.id))
if crew.share_crew:
self._add_attribute(
span, "crew_inputs", json.dumps(inputs) if inputs else None
)
self._add_attribute(span, "crew_process", crew.process)
self._add_attribute(span, "crew_memory", crew.memory)
self._add_attribute(span, "crew_number_of_tasks", len(crew.tasks))
@@ -109,6 +104,7 @@ class Telemetry:
json.dumps(
[
{
"key": agent.key,
"id": str(agent.id),
"role": agent.role,
"goal": agent.goal,
@@ -133,12 +129,14 @@ class Telemetry:
json.dumps(
[
{
"key": task.key,
"id": str(task.id),
"description": task.description,
"expected_output": task.expected_output,
"async_execution?": task.async_execution,
"human_input?": task.human_input,
"agent_role": task.agent.role if task.agent else "None",
"agent_key": task.agent.key if task.agent else None,
"context": (
[task.description for task in task.context]
if task.context
@@ -157,6 +155,12 @@ class Telemetry:
self._add_attribute(span, "platform_system", platform.system())
self._add_attribute(span, "platform_version", platform.version())
self._add_attribute(span, "cpus", os.cpu_count())
if crew.share_crew:
self._add_attribute(
span, "crew_inputs", json.dumps(inputs) if inputs else None
)
span.set_status(Status(StatusCode.OK))
span.end()
except Exception:
@@ -170,8 +174,9 @@ class Telemetry:
created_span = tracer.start_span("Task Created")
self._add_attribute(created_span, "crew_key", crew.key)
self._add_attribute(created_span, "crew_id", str(crew.id))
self._add_attribute(created_span, "task_index", crew.tasks.index(task))
self._add_attribute(created_span, "task_key", task.key)
self._add_attribute(created_span, "task_id", str(task.id))
if crew.share_crew:
@@ -187,8 +192,9 @@ class Telemetry:
span = tracer.start_span("Task Execution")
self._add_attribute(span, "crew_key", crew.key)
self._add_attribute(span, "crew_id", str(crew.id))
self._add_attribute(span, "task_index", crew.tasks.index(task))
self._add_attribute(span, "task_key", task.key)
self._add_attribute(span, "task_id", str(task.id))
if crew.share_crew:
@@ -203,13 +209,16 @@ class Telemetry:
return None
def task_ended(self, span: Span, task: Task):
def task_ended(self, span: Span, task: Task, crew: Crew):
"""Records task execution in a crew."""
if self.ready:
try:
self._add_attribute(
span, "output", task.output.raw_output if task.output else ""
)
if crew.share_crew:
self._add_attribute(
span,
"task_output",
task.output.raw if task.output else "",
)
span.set_status(Status(StatusCode.OK))
span.end()
@@ -284,10 +293,10 @@ class Telemetry:
"""Records the complete execution of a crew.
This is only collected if the user has opted-in to share the crew.
"""
self.crew_creation(crew, inputs)
if (self.ready) and (crew.share_crew):
try:
self.crew_creation(crew, inputs)
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Crew Execution")
self._add_attribute(
@@ -295,6 +304,7 @@ class Telemetry:
"crewai_version",
pkg_resources.get_distribution("crewai").version,
)
self._add_attribute(span, "crew_key", crew.key)
self._add_attribute(span, "crew_id", str(crew.id))
self._add_attribute(
span, "crew_inputs", json.dumps(inputs) if inputs else None
@@ -305,6 +315,7 @@ class Telemetry:
json.dumps(
[
{
"key": agent.key,
"id": str(agent.id),
"role": agent.role,
"goal": agent.goal,
@@ -335,6 +346,7 @@ class Telemetry:
"async_execution?": task.async_execution,
"human_input?": task.human_input,
"agent_role": task.agent.role if task.agent else "None",
"agent_key": task.agent.key if task.agent else None,
"context": (
[task.description for task in task.context]
if task.context

View File

@@ -0,0 +1,31 @@
from datetime import datetime
import json
from uuid import UUID
from pydantic import BaseModel
class CrewJSONEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, BaseModel):
return self._handle_pydantic_model(obj)
elif isinstance(obj, UUID):
return str(obj)
elif isinstance(obj, datetime):
return obj.isoformat()
return super().default(obj)
def _handle_pydantic_model(self, obj):
try:
data = obj.model_dump()
# Remove circular references
for key, value in data.items():
if isinstance(value, BaseModel):
data[key] = str(
value
) # Convert nested models to string representation
return data
except RecursionError:
return str(
obj
) # Fall back to string representation if circular reference is detected

View File

@@ -1,5 +1,7 @@
import os
import pickle
from datetime import datetime

View File

@@ -8,6 +8,8 @@ class Printer:
self._print_bold_green(content)
elif color == "bold_purple":
self._print_bold_purple(content)
elif color == "bold_blue":
self._print_bold_blue(content)
else:
print(content)
@@ -22,3 +24,6 @@ class Printer:
def _print_red(self, content):
print("\033[91m {}\033[00m".format(content))
def _print_bold_blue(self, content):
print("\033[1m\033[94m {}\033[00m".format(content))

View File

@@ -0,0 +1,61 @@
from pydantic import BaseModel, Field
from datetime import datetime
from typing import Dict, Any, Optional, List
from crewai.memory.storage.kickoff_task_outputs_storage import (
KickoffTaskOutputsSQLiteStorage,
)
from crewai.task import Task
class ExecutionLog(BaseModel):
task_id: str
expected_output: Optional[str] = None
output: Dict[str, Any]
timestamp: datetime = Field(default_factory=datetime.now)
task_index: int
inputs: Dict[str, Any] = Field(default_factory=dict)
was_replayed: bool = False
def __getitem__(self, key: str) -> Any:
return getattr(self, key)
class TaskOutputStorageHandler:
def __init__(self) -> None:
self.storage = KickoffTaskOutputsSQLiteStorage()
def update(self, task_index: int, log: Dict[str, Any]):
saved_outputs = self.load()
if saved_outputs is None:
raise ValueError("Logs cannot be None")
if log.get("was_replayed", False):
replayed = {
"task_id": str(log["task"].id),
"expected_output": log["task"].expected_output,
"output": log["output"],
"was_replayed": log["was_replayed"],
"inputs": log["inputs"],
}
self.storage.update(
task_index,
**replayed,
)
else:
self.storage.add(**log)
def add(
self,
task: Task,
output: Dict[str, Any],
task_index: int,
inputs: Dict[str, Any] = {},
was_replayed: bool = False,
):
self.storage.add(task, output, task_index, was_replayed, inputs)
def reset(self):
self.storage.delete_all()
def load(self) -> Optional[List[Dict[str, Any]]]:
return self.storage.load()