Docstring, Error Handling, and Type Hints Improvements (#1828)

* docs: add comprehensive docstrings to Flow class and methods

- Added NumPy-style docstrings to all decorator functions
- Added detailed documentation to Flow class methods
- Included parameter types, return types, and examples
- Enhanced documentation clarity and completeness

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: add secure path handling utilities

- Add path_utils.py with safe path handling functions
- Implement path validation and security checks
- Integrate secure path handling in flow_visualizer.py
- Add path validation in html_template_handler.py
- Add comprehensive error handling for path operations

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: add comprehensive docstrings and type hints to flow utils (#1819)

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: add type annotations and fix import sorting

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: add type annotations to flow utils and visualization utils

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: resolve import sorting and type annotation issues

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: properly initialize and update edge_smooth variable

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
This commit is contained in:
devin-ai-integration[bot]
2024-12-31 01:39:19 -03:00
committed by GitHub
parent ba0965ef87
commit 45b802a625
6 changed files with 889 additions and 87 deletions

View File

@@ -30,7 +30,47 @@ from crewai.telemetry import Telemetry
T = TypeVar("T", bound=Union[BaseModel, Dict[str, Any]])
def start(condition=None):
def start(condition: Optional[Union[str, dict, Callable]] = None) -> Callable:
"""
Marks a method as a flow's starting point.
This decorator designates a method as an entry point for the flow execution.
It can optionally specify conditions that trigger the start based on other
method executions.
Parameters
----------
condition : Optional[Union[str, dict, Callable]], optional
Defines when the start method should execute. Can be:
- str: Name of a method that triggers this start
- dict: Contains "type" ("AND"/"OR") and "methods" (list of triggers)
- Callable: A method reference that triggers this start
Default is None, meaning unconditional start.
Returns
-------
Callable
A decorator function that marks the method as a flow start point.
Raises
------
ValueError
If the condition format is invalid.
Examples
--------
>>> @start() # Unconditional start
>>> def begin_flow(self):
... pass
>>> @start("method_name") # Start after specific method
>>> def conditional_start(self):
... pass
>>> @start(and_("method1", "method2")) # Start after multiple methods
>>> def complex_start(self):
... pass
"""
def decorator(func):
func.__is_start_method__ = True
if condition is not None:
@@ -56,7 +96,42 @@ def start(condition=None):
return decorator
def listen(condition):
def listen(condition: Union[str, dict, Callable]) -> Callable:
"""
Creates a listener that executes when specified conditions are met.
This decorator sets up a method to execute in response to other method
executions in the flow. It supports both simple and complex triggering
conditions.
Parameters
----------
condition : Union[str, dict, Callable]
Specifies when the listener should execute. Can be:
- str: Name of a method that triggers this listener
- dict: Contains "type" ("AND"/"OR") and "methods" (list of triggers)
- Callable: A method reference that triggers this listener
Returns
-------
Callable
A decorator function that sets up the method as a listener.
Raises
------
ValueError
If the condition format is invalid.
Examples
--------
>>> @listen("process_data") # Listen to single method
>>> def handle_processed_data(self):
... pass
>>> @listen(or_("success", "failure")) # Listen to multiple methods
>>> def handle_completion(self):
... pass
"""
def decorator(func):
if isinstance(condition, str):
func.__trigger_methods__ = [condition]
@@ -80,7 +155,47 @@ def listen(condition):
return decorator
def router(condition):
def router(condition: Union[str, dict, Callable]) -> Callable:
"""
Creates a routing method that directs flow execution based on conditions.
This decorator marks a method as a router, which can dynamically determine
the next steps in the flow based on its return value. Routers are triggered
by specified conditions and can return constants that determine which path
the flow should take.
Parameters
----------
condition : Union[str, dict, Callable]
Specifies when the router should execute. Can be:
- str: Name of a method that triggers this router
- dict: Contains "type" ("AND"/"OR") and "methods" (list of triggers)
- Callable: A method reference that triggers this router
Returns
-------
Callable
A decorator function that sets up the method as a router.
Raises
------
ValueError
If the condition format is invalid.
Examples
--------
>>> @router("check_status")
>>> def route_based_on_status(self):
... if self.state.status == "success":
... return SUCCESS
... return FAILURE
>>> @router(and_("validate", "process"))
>>> def complex_routing(self):
... if all([self.state.valid, self.state.processed]):
... return CONTINUE
... return STOP
"""
def decorator(func):
func.__is_router__ = True
# Handle conditions like listen/start
@@ -106,7 +221,39 @@ def router(condition):
return decorator
def or_(*conditions):
def or_(*conditions: Union[str, dict, Callable]) -> dict:
"""
Combines multiple conditions with OR logic for flow control.
Creates a condition that is satisfied when any of the specified conditions
are met. This is used with @start, @listen, or @router decorators to create
complex triggering conditions.
Parameters
----------
*conditions : Union[str, dict, Callable]
Variable number of conditions that can be:
- str: Method names
- dict: Existing condition dictionaries
- Callable: Method references
Returns
-------
dict
A condition dictionary with format:
{"type": "OR", "methods": list_of_method_names}
Raises
------
ValueError
If any condition is invalid.
Examples
--------
>>> @listen(or_("success", "timeout"))
>>> def handle_completion(self):
... pass
"""
methods = []
for condition in conditions:
if isinstance(condition, dict) and "methods" in condition:
@@ -120,7 +267,39 @@ def or_(*conditions):
return {"type": "OR", "methods": methods}
def and_(*conditions):
def and_(*conditions: Union[str, dict, Callable]) -> dict:
"""
Combines multiple conditions with AND logic for flow control.
Creates a condition that is satisfied only when all specified conditions
are met. This is used with @start, @listen, or @router decorators to create
complex triggering conditions.
Parameters
----------
*conditions : Union[str, dict, Callable]
Variable number of conditions that can be:
- str: Method names
- dict: Existing condition dictionaries
- Callable: Method references
Returns
-------
dict
A condition dictionary with format:
{"type": "AND", "methods": list_of_method_names}
Raises
------
ValueError
If any condition is invalid.
Examples
--------
>>> @listen(and_("validated", "processed"))
>>> def handle_complete_data(self):
... pass
"""
methods = []
for condition in conditions:
if isinstance(condition, dict) and "methods" in condition:
@@ -286,6 +465,23 @@ class Flow(Generic[T], metaclass=FlowMeta):
return final_output
async def _execute_start_method(self, start_method_name: str) -> None:
"""
Executes a flow's start method and its triggered listeners.
This internal method handles the execution of methods marked with @start
decorator and manages the subsequent chain of listener executions.
Parameters
----------
start_method_name : str
The name of the start method to execute.
Notes
-----
- Executes the start method and captures its result
- Triggers execution of any listeners waiting on this start method
- Part of the flow's initialization sequence
"""
result = await self._execute_method(
start_method_name, self._methods[start_method_name]
)
@@ -306,6 +502,28 @@ class Flow(Generic[T], metaclass=FlowMeta):
return result
async def _execute_listeners(self, trigger_method: str, result: Any) -> None:
"""
Executes all listeners and routers triggered by a method completion.
This internal method manages the execution flow by:
1. First executing all triggered routers sequentially
2. Then executing all triggered listeners in parallel
Parameters
----------
trigger_method : str
The name of the method that triggered these listeners.
result : Any
The result from the triggering method, passed to listeners
that accept parameters.
Notes
-----
- Routers are executed sequentially to maintain flow control
- Each router's result becomes the new trigger_method
- Normal listeners are executed in parallel for efficiency
- Listeners can receive the trigger method's result as a parameter
"""
# First, handle routers repeatedly until no router triggers anymore
while True:
routers_triggered = self._find_triggered_methods(
@@ -335,6 +553,33 @@ class Flow(Generic[T], metaclass=FlowMeta):
def _find_triggered_methods(
self, trigger_method: str, router_only: bool
) -> List[str]:
"""
Finds all methods that should be triggered based on conditions.
This internal method evaluates both OR and AND conditions to determine
which methods should be executed next in the flow.
Parameters
----------
trigger_method : str
The name of the method that just completed execution.
router_only : bool
If True, only consider router methods.
If False, only consider non-router methods.
Returns
-------
List[str]
Names of methods that should be triggered.
Notes
-----
- Handles both OR and AND conditions:
* OR: Triggers if any condition is met
* AND: Triggers only when all conditions are met
- Maintains state for AND conditions using _pending_and_listeners
- Separates router and normal listener evaluation
"""
triggered = []
for listener_name, (condition_type, methods) in self._listeners.items():
is_router = listener_name in self._routers
@@ -363,6 +608,33 @@ class Flow(Generic[T], metaclass=FlowMeta):
return triggered
async def _execute_single_listener(self, listener_name: str, result: Any) -> None:
"""
Executes a single listener method with proper event handling.
This internal method manages the execution of an individual listener,
including parameter inspection, event emission, and error handling.
Parameters
----------
listener_name : str
The name of the listener method to execute.
result : Any
The result from the triggering method, which may be passed
to the listener if it accepts parameters.
Notes
-----
- Inspects method signature to determine if it accepts the trigger result
- Emits events for method execution start and finish
- Handles errors gracefully with detailed logging
- Recursively triggers listeners of this listener
- Supports both parameterized and parameter-less listeners
Error Handling
-------------
Catches and logs any exceptions during execution, preventing
individual listener failures from breaking the entire flow.
"""
try:
method = self._methods[listener_name]