mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-16 03:28:30 +00:00
merge upstream
This commit is contained in:
@@ -4,7 +4,6 @@ from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
from langchain.agents.agent import RunnableAgent
|
||||
from langchain.agents.tools import tool as LangChainTool
|
||||
from langchain.memory import ConversationSummaryMemory
|
||||
from langchain.tools.render import render_text_description
|
||||
from langchain_core.agents import AgentAction
|
||||
from langchain_core.callbacks import BaseCallbackHandler
|
||||
@@ -22,6 +21,7 @@ from pydantic import (
|
||||
from pydantic_core import PydanticCustomError
|
||||
|
||||
from crewai.agents import CacheHandler, CrewAgentExecutor, CrewAgentParser, ToolsHandler
|
||||
from crewai.memory.contextual.contextual_memory import ContextualMemory
|
||||
from crewai.utilities import I18N, Logger, Prompts, RPMController
|
||||
from crewai.utilities.token_counter_callback import TokenCalcHandler, TokenProcess
|
||||
from agentops.agent import track_agent
|
||||
@@ -70,6 +70,10 @@ class Agent(BaseModel):
|
||||
role: str = Field(description="Role of the agent")
|
||||
goal: str = Field(description="Objective of the agent")
|
||||
backstory: str = Field(description="Backstory of the agent")
|
||||
cache: bool = Field(
|
||||
default=True,
|
||||
description="Whether the agent should use a cache for tool usage.",
|
||||
)
|
||||
config: Optional[Dict[str, Any]] = Field(
|
||||
description="Configuration for the agent",
|
||||
default=None,
|
||||
@@ -96,11 +100,12 @@ class Agent(BaseModel):
|
||||
agent_executor: InstanceOf[CrewAgentExecutor] = Field(
|
||||
default=None, description="An instance of the CrewAgentExecutor class."
|
||||
)
|
||||
crew: Any = Field(default=None, description="Crew to which the agent belongs.")
|
||||
tools_handler: InstanceOf[ToolsHandler] = Field(
|
||||
default=None, description="An instance of the ToolsHandler class."
|
||||
)
|
||||
cache_handler: InstanceOf[CacheHandler] = Field(
|
||||
default=CacheHandler(), description="An instance of the CacheHandler class."
|
||||
default=None, description="An instance of the CacheHandler class."
|
||||
)
|
||||
step_callback: Optional[Any] = Field(
|
||||
default=None,
|
||||
@@ -120,6 +125,10 @@ class Agent(BaseModel):
|
||||
default=None, description="Callback to be executed"
|
||||
)
|
||||
|
||||
_original_role: str | None = None
|
||||
_original_goal: str | None = None
|
||||
_original_backstory: str | None = None
|
||||
|
||||
def __init__(__pydantic_self__, **data):
|
||||
config = data.pop("config", {})
|
||||
super().__init__(**config, **data)
|
||||
@@ -159,6 +168,8 @@ class Agent(BaseModel):
|
||||
TokenCalcHandler(self.llm.model_name, self._token_process)
|
||||
]
|
||||
if not self.agent_executor:
|
||||
if not self.cache_handler:
|
||||
self.cache_handler = CacheHandler()
|
||||
self.set_cache_handler(self.cache_handler)
|
||||
return self
|
||||
|
||||
@@ -178,7 +189,8 @@ class Agent(BaseModel):
|
||||
Returns:
|
||||
Output of the agent
|
||||
"""
|
||||
self.tools_handler.last_used_tool = {}
|
||||
if self.tools_handler:
|
||||
self.tools_handler.last_used_tool = {}
|
||||
|
||||
task_prompt = task.prompt()
|
||||
|
||||
@@ -187,13 +199,24 @@ class Agent(BaseModel):
|
||||
task=task_prompt, context=context
|
||||
)
|
||||
|
||||
tools = self._parse_tools(tools or self.tools)
|
||||
if self.crew and self.memory:
|
||||
contextual_memory = ContextualMemory(
|
||||
self.crew._short_term_memory,
|
||||
self.crew._long_term_memory,
|
||||
self.crew._entity_memory,
|
||||
)
|
||||
memory = contextual_memory.build_context_for_task(task, context)
|
||||
task_prompt += self.i18n.slice("memory").format(memory=memory)
|
||||
|
||||
tools = tools or self.tools
|
||||
parsed_tools = self._parse_tools(tools)
|
||||
|
||||
self.create_agent_executor(tools=tools)
|
||||
self.agent_executor.tools = tools
|
||||
self.agent_executor.tools = parsed_tools
|
||||
self.agent_executor.task = task
|
||||
|
||||
self.agent_executor.tools_description = render_text_description(tools)
|
||||
self.agent_executor.tools_names = self.__tools_names(tools)
|
||||
self.agent_executor.tools_description = render_text_description(parsed_tools)
|
||||
self.agent_executor.tools_names = self.__tools_names(parsed_tools)
|
||||
|
||||
result = self.agent_executor.invoke(
|
||||
{
|
||||
@@ -214,8 +237,10 @@ class Agent(BaseModel):
|
||||
Args:
|
||||
cache_handler: An instance of the CacheHandler class.
|
||||
"""
|
||||
self.cache_handler = cache_handler
|
||||
self.tools_handler = ToolsHandler(cache=self.cache_handler)
|
||||
self.tools_handler = ToolsHandler()
|
||||
if self.cache:
|
||||
self.cache_handler = cache_handler
|
||||
self.tools_handler.cache = cache_handler
|
||||
self.create_agent_executor()
|
||||
|
||||
def set_rpm_controller(self, rpm_controller: RPMController) -> None:
|
||||
@@ -248,8 +273,11 @@ class Agent(BaseModel):
|
||||
executor_args = {
|
||||
"llm": self.llm,
|
||||
"i18n": self.i18n,
|
||||
"crew": self.crew,
|
||||
"crew_agent": self,
|
||||
"tools": self._parse_tools(tools),
|
||||
"verbose": self.verbose,
|
||||
"original_tools": tools,
|
||||
"handle_parsing_errors": True,
|
||||
"max_iterations": self.max_iter,
|
||||
"step_callback": self.step_callback,
|
||||
@@ -263,15 +291,7 @@ class Agent(BaseModel):
|
||||
"request_within_rpm_limit"
|
||||
] = self._rpm_controller.check_or_wait
|
||||
|
||||
if self.memory:
|
||||
summary_memory = ConversationSummaryMemory(
|
||||
llm=self.llm, input_key="input", memory_key="chat_history"
|
||||
)
|
||||
executor_args["memory"] = summary_memory
|
||||
agent_args["chat_history"] = lambda x: x["chat_history"]
|
||||
prompt = Prompts(i18n=self.i18n, tools=tools).task_execution_with_memory()
|
||||
else:
|
||||
prompt = Prompts(i18n=self.i18n, tools=tools).task_execution()
|
||||
prompt = Prompts(i18n=self.i18n, tools=tools).task_execution()
|
||||
|
||||
execution_prompt = prompt.partial(
|
||||
goal=self.goal,
|
||||
@@ -287,10 +307,17 @@ class Agent(BaseModel):
|
||||
|
||||
def interpolate_inputs(self, inputs: Dict[str, Any]) -> None:
|
||||
"""Interpolate inputs into the agent description and backstory."""
|
||||
if self._original_role is None:
|
||||
self._original_role = self.role
|
||||
if self._original_goal is None:
|
||||
self._original_goal = self.goal
|
||||
if self._original_backstory is None:
|
||||
self._original_backstory = self.backstory
|
||||
|
||||
if inputs:
|
||||
self.role = self.role.format(**inputs)
|
||||
self.goal = self.goal.format(**inputs)
|
||||
self.backstory = self.backstory.format(**inputs)
|
||||
self.role = self._original_role.format(**inputs)
|
||||
self.goal = self._original_goal.format(**inputs)
|
||||
self.backstory = self._original_backstory.format(**inputs)
|
||||
|
||||
def increment_formatting_errors(self) -> None:
|
||||
"""Count the formatting errors of the agent."""
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import threading
|
||||
import time
|
||||
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union
|
||||
|
||||
@@ -12,17 +13,26 @@ from langchain_core.utils.input import get_color_mapping
|
||||
from pydantic import InstanceOf
|
||||
|
||||
from crewai.agents.tools_handler import ToolsHandler
|
||||
from crewai.memory.entity.entity_memory_item import EntityMemoryItem
|
||||
from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
|
||||
from crewai.memory.short_term.short_term_memory_item import ShortTermMemoryItem
|
||||
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
|
||||
from crewai.utilities import I18N
|
||||
from crewai.utilities.converter import ConverterError
|
||||
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
|
||||
|
||||
|
||||
class CrewAgentExecutor(AgentExecutor):
|
||||
_i18n: I18N = I18N()
|
||||
should_ask_for_human_input: bool = False
|
||||
llm: Any = None
|
||||
iterations: int = 0
|
||||
task: Any = None
|
||||
tools_description: str = ""
|
||||
tools_names: str = ""
|
||||
original_tools: List[Any] = []
|
||||
crew_agent: Any = None
|
||||
crew: Any = None
|
||||
function_calling_llm: Any = None
|
||||
request_within_rpm_limit: Any = None
|
||||
tools_handler: InstanceOf[ToolsHandler] = None
|
||||
@@ -41,6 +51,52 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
self.iterations == self.force_answer_max_iterations
|
||||
) and not self.have_forced_answer
|
||||
|
||||
def _create_short_term_memory(self, output) -> None:
|
||||
if (
|
||||
self.crew_agent.memory
|
||||
and "Action: Delegate work to co-worker" not in output.log
|
||||
):
|
||||
memory = ShortTermMemoryItem(
|
||||
data=output.log,
|
||||
agent=self.crew_agent.role,
|
||||
metadata={
|
||||
"observation": self.task.description,
|
||||
},
|
||||
)
|
||||
self.crew._short_term_memory.save(memory)
|
||||
|
||||
def _create_long_term_memory(self, output) -> None:
|
||||
if self.crew_agent.memory:
|
||||
ltm_agent = TaskEvaluator(self.crew_agent)
|
||||
evaluation = ltm_agent.evaluate(self.task, output.log)
|
||||
|
||||
if isinstance(evaluation, ConverterError):
|
||||
return
|
||||
|
||||
long_term_memory = LongTermMemoryItem(
|
||||
task=self.task.description,
|
||||
agent=self.crew_agent.role,
|
||||
quality=evaluation.quality,
|
||||
datetime=str(time.time()),
|
||||
expected_output=self.task.expected_output,
|
||||
metadata={
|
||||
"suggestions": "\n".join(
|
||||
[f"- {s}" for s in evaluation.suggestions]
|
||||
),
|
||||
"quality": evaluation.quality,
|
||||
},
|
||||
)
|
||||
self.crew._long_term_memory.save(long_term_memory)
|
||||
|
||||
for entity in evaluation.entities:
|
||||
entity_memory = EntityMemoryItem(
|
||||
name=entity.name,
|
||||
type=entity.type,
|
||||
description=entity.description,
|
||||
relationships="\n".join([f"- {r}" for r in entity.relationships]),
|
||||
)
|
||||
self.crew._entity_memory.save(entity_memory)
|
||||
|
||||
def _call(
|
||||
self,
|
||||
inputs: Dict[str, str],
|
||||
@@ -51,13 +107,18 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
name_to_tool_map = {tool.name: tool for tool in self.tools}
|
||||
# We construct a mapping from each tool to a color, used for logging.
|
||||
color_mapping = get_color_mapping(
|
||||
[tool.name for tool in self.tools], excluded_colors=["green", "red"]
|
||||
[tool.name.casefold() for tool in self.tools],
|
||||
excluded_colors=["green", "red"],
|
||||
)
|
||||
intermediate_steps: List[Tuple[AgentAction, str]] = []
|
||||
# Allowing human input given task setting
|
||||
if self.task.human_input:
|
||||
self.should_ask_for_human_input = True
|
||||
# Let's start tracking the number of iterations and time elapsed
|
||||
self.iterations = 0
|
||||
time_elapsed = 0.0
|
||||
start_time = time.time()
|
||||
|
||||
# We now enter the agent loop (until it returns something).
|
||||
while self._should_continue(self.iterations, time_elapsed):
|
||||
if not self.request_within_rpm_limit or self.request_within_rpm_limit():
|
||||
@@ -68,16 +129,21 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
intermediate_steps,
|
||||
run_manager=run_manager,
|
||||
)
|
||||
|
||||
if self.step_callback:
|
||||
self.step_callback(next_step_output)
|
||||
|
||||
if isinstance(next_step_output, AgentFinish):
|
||||
# Creating long term memory
|
||||
create_long_term_memory = threading.Thread(
|
||||
target=self._create_long_term_memory, args=(next_step_output,)
|
||||
)
|
||||
create_long_term_memory.start()
|
||||
|
||||
return self._return(
|
||||
next_step_output, intermediate_steps, run_manager=run_manager
|
||||
)
|
||||
|
||||
intermediate_steps.extend(next_step_output)
|
||||
|
||||
if len(next_step_output) == 1:
|
||||
next_step_action = next_step_output[0]
|
||||
# See if tool should return directly
|
||||
@@ -86,11 +152,13 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
return self._return(
|
||||
tool_return, intermediate_steps, run_manager=run_manager
|
||||
)
|
||||
|
||||
self.iterations += 1
|
||||
time_elapsed = time.time() - start_time
|
||||
output = self.agent.return_stopped_response(
|
||||
self.early_stopping_method, intermediate_steps, **inputs
|
||||
)
|
||||
|
||||
return self._return(output, intermediate_steps, run_manager=run_manager)
|
||||
|
||||
def _iter_next_step(
|
||||
@@ -114,6 +182,7 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
return
|
||||
|
||||
intermediate_steps = self._prepare_intermediate_steps(intermediate_steps)
|
||||
|
||||
# Call the LLM to see what to do.
|
||||
output = self.agent.plan(
|
||||
intermediate_steps,
|
||||
@@ -147,8 +216,10 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
else:
|
||||
raise ValueError("Got unexpected type of `handle_parsing_errors`")
|
||||
output = AgentAction("_Exception", observation, "")
|
||||
|
||||
if run_manager:
|
||||
run_manager.on_agent_action(output, color="green")
|
||||
|
||||
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
||||
observation = ExceptionTool().run(
|
||||
output.tool_input,
|
||||
@@ -169,19 +240,39 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
|
||||
# If the tool chosen is the finishing tool, then we end and return.
|
||||
if isinstance(output, AgentFinish):
|
||||
yield output
|
||||
return
|
||||
if self.should_ask_for_human_input:
|
||||
# Making sure we only ask for it once, so disabling for the next thought loop
|
||||
self.should_ask_for_human_input = False
|
||||
human_feedback = self._ask_human_input(output.return_values["output"])
|
||||
action = AgentAction(
|
||||
tool="Human Input", tool_input=human_feedback, log=output.log
|
||||
)
|
||||
yield AgentStep(
|
||||
action=action,
|
||||
observation=self._i18n.slice("human_feedback").format(
|
||||
human_feedback=human_feedback
|
||||
),
|
||||
)
|
||||
return
|
||||
|
||||
else:
|
||||
yield output
|
||||
return
|
||||
|
||||
self._create_short_term_memory(output)
|
||||
|
||||
actions: List[AgentAction]
|
||||
actions = [output] if isinstance(output, AgentAction) else output
|
||||
yield from actions
|
||||
|
||||
for agent_action in actions:
|
||||
if run_manager:
|
||||
run_manager.on_agent_action(agent_action, color="green")
|
||||
# Otherwise we lookup the tool
|
||||
|
||||
tool_usage = ToolUsage(
|
||||
tools_handler=self.tools_handler,
|
||||
tools=self.tools,
|
||||
original_tools=self.original_tools,
|
||||
tools_description=self.tools_description,
|
||||
tools_names=self.tools_names,
|
||||
function_calling_llm=self.function_calling_llm,
|
||||
@@ -193,13 +284,20 @@ class CrewAgentExecutor(AgentExecutor):
|
||||
if isinstance(tool_calling, ToolUsageErrorException):
|
||||
observation = tool_calling.message
|
||||
else:
|
||||
if tool_calling.tool_name.lower().strip() in [
|
||||
name.lower().strip() for name in name_to_tool_map
|
||||
if tool_calling.tool_name.casefold().strip() in [
|
||||
name.casefold().strip() for name in name_to_tool_map
|
||||
]:
|
||||
observation = tool_usage.use(tool_calling, agent_action.log)
|
||||
else:
|
||||
observation = self._i18n.errors("wrong_tool_name").format(
|
||||
tool=tool_calling.tool_name,
|
||||
tools=", ".join([tool.name for tool in self.tools]),
|
||||
tools=", ".join([tool.name.casefold() for tool in self.tools]),
|
||||
)
|
||||
|
||||
yield AgentStep(action=agent_action, observation=observation)
|
||||
|
||||
def _ask_human_input(self, final_answer: dict) -> str:
|
||||
"""Get human input."""
|
||||
return input(
|
||||
self._i18n.slice("getting_input").format(final_answer=final_answer)
|
||||
)
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
from typing import Any
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
from ..tools.cache_tools import CacheTools
|
||||
from ..tools.tool_calling import ToolCalling
|
||||
from ..tools.tool_calling import InstructorToolCalling, ToolCalling
|
||||
from .cache.cache_handler import CacheHandler
|
||||
|
||||
|
||||
@@ -11,15 +11,20 @@ class ToolsHandler:
|
||||
last_used_tool: ToolCalling = {}
|
||||
cache: CacheHandler
|
||||
|
||||
def __init__(self, cache: CacheHandler):
|
||||
def __init__(self, cache: Optional[CacheHandler] = None):
|
||||
"""Initialize the callback handler."""
|
||||
self.cache = cache
|
||||
self.last_used_tool = {}
|
||||
|
||||
def on_tool_use(self, calling: ToolCalling, output: str) -> Any:
|
||||
def on_tool_use(
|
||||
self,
|
||||
calling: Union[ToolCalling, InstructorToolCalling],
|
||||
output: str,
|
||||
should_cache: bool = True,
|
||||
) -> Any:
|
||||
"""Run when tool ends running."""
|
||||
self.last_used_tool = calling
|
||||
if calling.tool_name != CacheTools().name:
|
||||
if self.cache and should_cache and calling.tool_name != CacheTools().name:
|
||||
self.cache.add(
|
||||
tool=calling.tool_name,
|
||||
input=calling.arguments,
|
||||
|
||||
1
src/crewai/cli/templates/.gitignore
vendored
1
src/crewai/cli/templates/.gitignore
vendored
@@ -1,2 +1,3 @@
|
||||
.env
|
||||
.db
|
||||
__pycache__/
|
||||
|
||||
@@ -1,5 +1,8 @@
|
||||
import json
|
||||
import subprocess
|
||||
import sys
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
from langchain_core.callbacks import BaseCallbackHandler
|
||||
@@ -18,6 +21,9 @@ from pydantic_core import PydanticCustomError
|
||||
|
||||
from crewai.agent import Agent
|
||||
from crewai.agents.cache import CacheHandler
|
||||
from crewai.memory.entity.entity_memory import EntityMemory
|
||||
from crewai.memory.long_term.long_term_memory import LongTermMemory
|
||||
from crewai.memory.short_term.short_term_memory import ShortTermMemory
|
||||
from crewai.process import Process
|
||||
from crewai.task import Task
|
||||
from crewai.telemetry import Telemetry
|
||||
@@ -34,14 +40,17 @@ class Crew(BaseModel):
|
||||
tasks: List of tasks assigned to the crew.
|
||||
agents: List of agents part of this crew.
|
||||
manager_llm: The language model that will run manager agent.
|
||||
memory: Whether the crew should use memory to store memories of it's execution.
|
||||
manager_callbacks: The callback handlers to be executed by the manager agent when hierarchical process is used
|
||||
cache: Whether the crew should use a cache to store the results of the tools execution.
|
||||
function_calling_llm: The language model that will run the tool calling for all the agents.
|
||||
process: The process flow that the crew will follow (e.g., sequential).
|
||||
process: The process flow that the crew will follow (e.g., sequential, hierarchical).
|
||||
verbose: Indicates the verbosity level for logging during execution.
|
||||
config: Configuration settings for the crew.
|
||||
max_rpm: Maximum number of requests per minute for the crew execution to be respected.
|
||||
id: A unique identifier for the crew instance.
|
||||
full_output: Whether the crew should return the full output with all tasks outputs or just the final output.
|
||||
task_callback: Callback to be executed after each task for every agents execution.
|
||||
step_callback: Callback to be executed after each step for every agents execution.
|
||||
share_crew: Whether you want to share the complete crew infromation and execution with crewAI to make the library better, and allow us to train models.
|
||||
"""
|
||||
@@ -51,11 +60,24 @@ class Crew(BaseModel):
|
||||
_rpm_controller: RPMController = PrivateAttr()
|
||||
_logger: Logger = PrivateAttr()
|
||||
_cache_handler: InstanceOf[CacheHandler] = PrivateAttr(default=CacheHandler())
|
||||
_short_term_memory: Optional[InstanceOf[ShortTermMemory]] = PrivateAttr()
|
||||
_long_term_memory: Optional[InstanceOf[LongTermMemory]] = PrivateAttr()
|
||||
_entity_memory: Optional[InstanceOf[EntityMemory]] = PrivateAttr()
|
||||
|
||||
cache: bool = Field(default=True)
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
tasks: List[Task] = Field(default_factory=list)
|
||||
agents: List[Agent] = Field(default_factory=list)
|
||||
process: Process = Field(default=Process.sequential)
|
||||
verbose: Union[int, bool] = Field(default=0)
|
||||
memory: bool = Field(
|
||||
default=True,
|
||||
description="Whether the crew should use memory to store memories of it's execution",
|
||||
)
|
||||
embedder: Optional[dict] = Field(
|
||||
default={"provider": "openai"},
|
||||
description="Configuration for the embedder to be used for the crew.",
|
||||
)
|
||||
usage_metrics: Optional[dict] = Field(
|
||||
default=None,
|
||||
description="Metrics for the LLM usage during all tasks execution.",
|
||||
@@ -81,6 +103,10 @@ class Crew(BaseModel):
|
||||
default=None,
|
||||
description="Callback to be executed after each step for all agents execution.",
|
||||
)
|
||||
task_callback: Optional[Any] = Field(
|
||||
default=None,
|
||||
description="Callback to be executed after each task for all agents execution.",
|
||||
)
|
||||
max_rpm: Optional[int] = Field(
|
||||
default=None,
|
||||
description="Maximum number of requests per minute for the crew execution to be respected.",
|
||||
@@ -89,6 +115,10 @@ class Crew(BaseModel):
|
||||
default="en",
|
||||
description="Language used for the crew, defaults to English.",
|
||||
)
|
||||
language_file: str = Field(
|
||||
default=None,
|
||||
description="Path to the language file to be used for the crew.",
|
||||
)
|
||||
|
||||
@field_validator("id", mode="before")
|
||||
@classmethod
|
||||
@@ -125,6 +155,19 @@ class Crew(BaseModel):
|
||||
self._telemetry.crew_creation(self)
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def create_crew_memory(self) -> "Crew":
|
||||
"""Set private attributes."""
|
||||
if self.memory:
|
||||
storage_dir = Path(".db")
|
||||
storage_dir.mkdir(exist_ok=True)
|
||||
if sys.platform.startswith("win"):
|
||||
subprocess.call(["attrib", "+H", str(storage_dir)])
|
||||
self._long_term_memory = LongTermMemory()
|
||||
self._short_term_memory = ShortTermMemory(embedder_config=self.embedder)
|
||||
self._entity_memory = EntityMemory(embedder_config=self.embedder)
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def check_manager_llm(self):
|
||||
"""Validates that the language model is set when using hierarchical process."""
|
||||
@@ -151,7 +194,8 @@ class Crew(BaseModel):
|
||||
|
||||
if self.agents:
|
||||
for agent in self.agents:
|
||||
agent.set_cache_handler(self._cache_handler)
|
||||
if self.cache:
|
||||
agent.set_cache_handler(self._cache_handler)
|
||||
if self.max_rpm:
|
||||
agent.set_rpm_controller(self._rpm_controller)
|
||||
return self
|
||||
@@ -188,16 +232,20 @@ class Crew(BaseModel):
|
||||
"""Starts the crew to work on its assigned tasks."""
|
||||
self._execution_span = self._telemetry.crew_execution_span(self)
|
||||
self._interpolate_inputs(inputs)
|
||||
self._set_tasks_callbacks()
|
||||
|
||||
i18n = I18N(language=self.language, language_file=self.language_file)
|
||||
|
||||
for agent in self.agents:
|
||||
agent.i18n = I18N(language=self.language)
|
||||
agent.i18n = i18n
|
||||
agent.crew = self
|
||||
|
||||
if not agent.function_calling_llm:
|
||||
agent.function_calling_llm = self.function_calling_llm
|
||||
agent.create_agent_executor()
|
||||
if not agent.step_callback:
|
||||
agent.step_callback = self.step_callback
|
||||
agent.create_agent_executor()
|
||||
|
||||
agent.create_agent_executor()
|
||||
|
||||
metrics = []
|
||||
|
||||
@@ -251,7 +299,7 @@ class Crew(BaseModel):
|
||||
def _run_hierarchical_process(self) -> str:
|
||||
"""Creates and assigns a manager agent to make sure the crew completes the tasks."""
|
||||
|
||||
i18n = I18N(language=self.language)
|
||||
i18n = I18N(language=self.language, language_file=self.language_file)
|
||||
manager = Agent(
|
||||
role=i18n.retrieve("hierarchical_manager_agent", "role"),
|
||||
goal=i18n.retrieve("hierarchical_manager_agent", "goal"),
|
||||
@@ -275,6 +323,11 @@ class Crew(BaseModel):
|
||||
self._finish_execution(task_output)
|
||||
return self._format_output(task_output), manager._token_process.get_summary()
|
||||
|
||||
def _set_tasks_callbacks(self) -> str:
|
||||
"""Sets callback for every task suing task_callback"""
|
||||
for task in self.tasks:
|
||||
task.callback = self.task_callback
|
||||
|
||||
def _interpolate_inputs(self, inputs: Dict[str, Any]) -> str:
|
||||
"""Interpolates the inputs in the tasks and agents."""
|
||||
[task.interpolate_inputs(inputs) for task in self.tasks]
|
||||
|
||||
3
src/crewai/memory/__init__.py
Normal file
3
src/crewai/memory/__init__.py
Normal file
@@ -0,0 +1,3 @@
|
||||
from .entity.entity_memory import EntityMemory
|
||||
from .long_term.long_term_memory import LongTermMemory
|
||||
from .short_term.short_term_memory import ShortTermMemory
|
||||
0
src/crewai/memory/contextual/__init__.py
Normal file
0
src/crewai/memory/contextual/__init__.py
Normal file
58
src/crewai/memory/contextual/contextual_memory.py
Normal file
58
src/crewai/memory/contextual/contextual_memory.py
Normal file
@@ -0,0 +1,58 @@
|
||||
from crewai.memory import EntityMemory, LongTermMemory, ShortTermMemory
|
||||
|
||||
|
||||
class ContextualMemory:
|
||||
def __init__(self, stm: ShortTermMemory, ltm: LongTermMemory, em: EntityMemory):
|
||||
self.stm = stm
|
||||
self.ltm = ltm
|
||||
self.em = em
|
||||
|
||||
def build_context_for_task(self, task, context) -> str:
|
||||
"""
|
||||
Automatically builds a minimal, highly relevant set of contextual information
|
||||
for a given task.
|
||||
"""
|
||||
query = f"{task.description} {context}".strip()
|
||||
|
||||
if query == "":
|
||||
return ""
|
||||
|
||||
context = []
|
||||
context.append(self._fetch_ltm_context(task.description))
|
||||
context.append(self._fetch_stm_context(query))
|
||||
context.append(self._fetch_entity_context(query))
|
||||
return "\n".join(filter(None, context))
|
||||
|
||||
def _fetch_stm_context(self, query) -> str:
|
||||
"""
|
||||
Fetches recent relevant insights from STM related to the task's description and expected_output,
|
||||
formatted as bullet points.
|
||||
"""
|
||||
stm_results = self.stm.search(query)
|
||||
formatted_results = "\n".join([f"- {result}" for result in stm_results])
|
||||
return f"Recent Insights:\n{formatted_results}" if stm_results else ""
|
||||
|
||||
def _fetch_ltm_context(self, task) -> str:
|
||||
"""
|
||||
Fetches historical data or insights from LTM that are relevant to the task's description and expected_output,
|
||||
formatted as bullet points.
|
||||
"""
|
||||
ltm_results = self.ltm.search(task)
|
||||
if not ltm_results:
|
||||
return None
|
||||
formatted_results = "\n".join(
|
||||
[f"{result['metadata']['suggestions']}" for result in ltm_results]
|
||||
)
|
||||
formatted_results = list(set(formatted_results))
|
||||
return f"Historical Data:\n{formatted_results}" if ltm_results else ""
|
||||
|
||||
def _fetch_entity_context(self, query) -> str:
|
||||
"""
|
||||
Fetches relevant entity information from Entity Memory related to the task's description and expected_output,
|
||||
formatted as bullet points.
|
||||
"""
|
||||
em_results = self.em.search(query)
|
||||
formatted_results = "\n".join(
|
||||
[f"- {result['context']}" for result in em_results]
|
||||
)
|
||||
return f"Entities:\n{formatted_results}" if em_results else ""
|
||||
0
src/crewai/memory/entity/__init__.py
Normal file
0
src/crewai/memory/entity/__init__.py
Normal file
22
src/crewai/memory/entity/entity_memory.py
Normal file
22
src/crewai/memory/entity/entity_memory.py
Normal file
@@ -0,0 +1,22 @@
|
||||
from crewai.memory.entity.entity_memory_item import EntityMemoryItem
|
||||
from crewai.memory.memory import Memory
|
||||
from crewai.memory.storage.rag_storage import RAGStorage
|
||||
|
||||
|
||||
class EntityMemory(Memory):
|
||||
"""
|
||||
EntityMemory class for managing structured information about entities
|
||||
and their relationships using SQLite storage.
|
||||
Inherits from the Memory class.
|
||||
"""
|
||||
|
||||
def __init__(self, embedder_config=None):
|
||||
storage = RAGStorage(
|
||||
type="entities", allow_reset=False, embedder_config=embedder_config
|
||||
)
|
||||
super().__init__(storage)
|
||||
|
||||
def save(self, item: EntityMemoryItem) -> None:
|
||||
"""Saves an entity item into the SQLite storage."""
|
||||
data = f"{item.name}({item.type}): {item.description}"
|
||||
super().save(data, item.metadata)
|
||||
12
src/crewai/memory/entity/entity_memory_item.py
Normal file
12
src/crewai/memory/entity/entity_memory_item.py
Normal file
@@ -0,0 +1,12 @@
|
||||
class EntityMemoryItem:
|
||||
def __init__(
|
||||
self,
|
||||
name: str,
|
||||
type: str,
|
||||
description: str,
|
||||
relationships: str,
|
||||
):
|
||||
self.name = name
|
||||
self.type = type
|
||||
self.description = description
|
||||
self.metadata = {"relationships": relationships}
|
||||
0
src/crewai/memory/long_term/__init__.py
Normal file
0
src/crewai/memory/long_term/__init__.py
Normal file
32
src/crewai/memory/long_term/long_term_memory.py
Normal file
32
src/crewai/memory/long_term/long_term_memory.py
Normal file
@@ -0,0 +1,32 @@
|
||||
from typing import Any, Dict
|
||||
|
||||
from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
|
||||
from crewai.memory.memory import Memory
|
||||
from crewai.memory.storage.ltm_sqlite_storage import LTMSQLiteStorage
|
||||
|
||||
|
||||
class LongTermMemory(Memory):
|
||||
"""
|
||||
LongTermMemory class for managing cross runs data related to overall crew's
|
||||
execution and performance.
|
||||
Inherits from the Memory class and utilizes an instance of a class that
|
||||
adheres to the Storage for data storage, specifically working with
|
||||
LongTermMemoryItem instances.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
storage = LTMSQLiteStorage()
|
||||
super().__init__(storage)
|
||||
|
||||
def save(self, item: LongTermMemoryItem) -> None:
|
||||
metadata = item.metadata
|
||||
metadata.update({"agent": item.agent, "expected_output": item.expected_output})
|
||||
self.storage.save(
|
||||
task_description=item.task,
|
||||
score=metadata["quality"],
|
||||
metadata=metadata,
|
||||
datetime=item.datetime,
|
||||
)
|
||||
|
||||
def search(self, task: str) -> Dict[str, Any]:
|
||||
return self.storage.load(task)
|
||||
19
src/crewai/memory/long_term/long_term_memory_item.py
Normal file
19
src/crewai/memory/long_term/long_term_memory_item.py
Normal file
@@ -0,0 +1,19 @@
|
||||
from typing import Any, Dict, Union
|
||||
|
||||
|
||||
class LongTermMemoryItem:
|
||||
def __init__(
|
||||
self,
|
||||
agent: str,
|
||||
task: str,
|
||||
expected_output: str,
|
||||
datetime: str,
|
||||
quality: Union[int, float] = None,
|
||||
metadata: Dict[str, Any] = None,
|
||||
):
|
||||
self.task = task
|
||||
self.agent = agent
|
||||
self.quality = quality
|
||||
self.datetime = datetime
|
||||
self.expected_output = expected_output
|
||||
self.metadata = metadata if metadata is not None else {}
|
||||
23
src/crewai/memory/memory.py
Normal file
23
src/crewai/memory/memory.py
Normal file
@@ -0,0 +1,23 @@
|
||||
from typing import Any, Dict
|
||||
|
||||
from crewai.memory.storage.interface import Storage
|
||||
|
||||
|
||||
class Memory:
|
||||
"""
|
||||
Base class for memory, now supporting agent tags and generic metadata.
|
||||
"""
|
||||
|
||||
def __init__(self, storage: Storage):
|
||||
self.storage = storage
|
||||
|
||||
def save(
|
||||
self, value: Any, metadata: Dict[str, Any] = None, agent: str = None
|
||||
) -> None:
|
||||
metadata = metadata or {}
|
||||
if agent:
|
||||
metadata["agent"] = agent
|
||||
self.storage.save(value, metadata)
|
||||
|
||||
def search(self, query: str) -> Dict[str, Any]:
|
||||
return self.storage.search(query)
|
||||
0
src/crewai/memory/short_term/__init__.py
Normal file
0
src/crewai/memory/short_term/__init__.py
Normal file
23
src/crewai/memory/short_term/short_term_memory.py
Normal file
23
src/crewai/memory/short_term/short_term_memory.py
Normal file
@@ -0,0 +1,23 @@
|
||||
from crewai.memory.memory import Memory
|
||||
from crewai.memory.short_term.short_term_memory_item import ShortTermMemoryItem
|
||||
from crewai.memory.storage.rag_storage import RAGStorage
|
||||
|
||||
|
||||
class ShortTermMemory(Memory):
|
||||
"""
|
||||
ShortTermMemory class for managing transient data related to immediate tasks
|
||||
and interactions.
|
||||
Inherits from the Memory class and utilizes an instance of a class that
|
||||
adheres to the Storage for data storage, specifically working with
|
||||
MemoryItem instances.
|
||||
"""
|
||||
|
||||
def __init__(self, embedder_config=None):
|
||||
storage = RAGStorage(type="short_term", embedder_config=embedder_config)
|
||||
super().__init__(storage)
|
||||
|
||||
def save(self, item: ShortTermMemoryItem) -> None:
|
||||
super().save(item.data, item.metadata, item.agent)
|
||||
|
||||
def search(self, query: str, score_threshold: float = 0.35):
|
||||
return self.storage.search(query=query, score_threshold=score_threshold)
|
||||
8
src/crewai/memory/short_term/short_term_memory_item.py
Normal file
8
src/crewai/memory/short_term/short_term_memory_item.py
Normal file
@@ -0,0 +1,8 @@
|
||||
from typing import Any, Dict
|
||||
|
||||
|
||||
class ShortTermMemoryItem:
|
||||
def __init__(self, data: Any, agent: str, metadata: Dict[str, Any] = None):
|
||||
self.data = data
|
||||
self.agent = agent
|
||||
self.metadata = metadata if metadata is not None else {}
|
||||
11
src/crewai/memory/storage/interface.py
Normal file
11
src/crewai/memory/storage/interface.py
Normal file
@@ -0,0 +1,11 @@
|
||||
from typing import Any, Dict
|
||||
|
||||
|
||||
class Storage:
|
||||
"""Abstract base class defining the storage interface"""
|
||||
|
||||
def save(self, key: str, value: Any, metadata: Dict[str, Any]) -> None:
|
||||
pass
|
||||
|
||||
def search(self, key: str) -> Dict[str, Any]:
|
||||
pass
|
||||
101
src/crewai/memory/storage/ltm_sqlite_storage.py
Normal file
101
src/crewai/memory/storage/ltm_sqlite_storage.py
Normal file
@@ -0,0 +1,101 @@
|
||||
import json
|
||||
import sqlite3
|
||||
from typing import Any, Dict, Union
|
||||
|
||||
from crewai.utilities import Printer
|
||||
from crewai.utilities.paths import db_storage_path
|
||||
|
||||
|
||||
class LTMSQLiteStorage:
|
||||
"""
|
||||
An updated SQLite storage class for LTM data storage.
|
||||
"""
|
||||
|
||||
def __init__(self, db_path=f"{db_storage_path()}/long_term_memory_storage.db"):
|
||||
self.db_path = db_path
|
||||
self._printer: Printer = Printer()
|
||||
self._initialize_db()
|
||||
|
||||
def _initialize_db(self):
|
||||
"""
|
||||
Initializes the SQLite database and creates LTM table
|
||||
"""
|
||||
try:
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
cursor = conn.cursor()
|
||||
cursor.execute(
|
||||
"""
|
||||
CREATE TABLE IF NOT EXISTS long_term_memories (
|
||||
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||
task_description TEXT,
|
||||
metadata TEXT,
|
||||
datetime TEXT,
|
||||
score REAL
|
||||
)
|
||||
"""
|
||||
)
|
||||
|
||||
conn.commit()
|
||||
except sqlite3.Error as e:
|
||||
self._printer.print(
|
||||
content=f"MEMORY ERROR: An error occurred during database initialization: {e}",
|
||||
color="red",
|
||||
)
|
||||
|
||||
def save(
|
||||
self,
|
||||
task_description: str,
|
||||
metadata: Dict[str, Any],
|
||||
datetime: str,
|
||||
score: Union[int, float],
|
||||
) -> None:
|
||||
"""Saves data to the LTM table with error handling."""
|
||||
try:
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
cursor = conn.cursor()
|
||||
cursor.execute(
|
||||
"""
|
||||
INSERT INTO long_term_memories (task_description, metadata, datetime, score)
|
||||
VALUES (?, ?, ?, ?)
|
||||
""",
|
||||
(task_description, json.dumps(metadata), datetime, score),
|
||||
)
|
||||
conn.commit()
|
||||
except sqlite3.Error as e:
|
||||
self._printer.print(
|
||||
content=f"MEMORY ERROR: An error occurred while saving to LTM: {e}",
|
||||
color="red",
|
||||
)
|
||||
|
||||
def load(self, task_description: str) -> Dict[str, Any]:
|
||||
"""Queries the LTM table by task description with error handling."""
|
||||
try:
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
cursor = conn.cursor()
|
||||
cursor.execute(
|
||||
"""
|
||||
SELECT metadata, datetime, score
|
||||
FROM long_term_memories
|
||||
WHERE task_description = ?
|
||||
ORDER BY datetime DESC, score ASC
|
||||
LIMIT 2
|
||||
""",
|
||||
(task_description,),
|
||||
)
|
||||
rows = cursor.fetchall()
|
||||
if rows:
|
||||
return [
|
||||
{
|
||||
"metadata": json.loads(row[0]),
|
||||
"datetime": row[1],
|
||||
"score": row[2],
|
||||
}
|
||||
for row in rows
|
||||
]
|
||||
|
||||
except sqlite3.Error as e:
|
||||
self._printer.print(
|
||||
content=f"MEMORY ERROR: An error occurred while querying LTM: {e}",
|
||||
color="red",
|
||||
)
|
||||
return None
|
||||
88
src/crewai/memory/storage/rag_storage.py
Normal file
88
src/crewai/memory/storage/rag_storage.py
Normal file
@@ -0,0 +1,88 @@
|
||||
import contextlib
|
||||
import io
|
||||
import logging
|
||||
from typing import Any, Dict
|
||||
|
||||
from embedchain import App
|
||||
from embedchain.llm.base import BaseLlm
|
||||
|
||||
from crewai.memory.storage.interface import Storage
|
||||
from crewai.utilities.paths import db_storage_path
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def suppress_logging(
|
||||
logger_name="chromadb.segment.impl.vector.local_persistent_hnsw",
|
||||
level=logging.ERROR,
|
||||
):
|
||||
logger = logging.getLogger(logger_name)
|
||||
original_level = logger.getEffectiveLevel()
|
||||
logger.setLevel(level)
|
||||
with contextlib.redirect_stdout(io.StringIO()), contextlib.redirect_stderr(
|
||||
io.StringIO()
|
||||
), contextlib.suppress(UserWarning):
|
||||
yield
|
||||
logger.setLevel(original_level)
|
||||
|
||||
|
||||
class FakeLLM(BaseLlm):
|
||||
pass
|
||||
|
||||
|
||||
class RAGStorage(Storage):
|
||||
"""
|
||||
Extends Storage to handle embeddings for memory entries, improving
|
||||
search efficiency.
|
||||
"""
|
||||
|
||||
def __init__(self, type, allow_reset=True, embedder_config=None):
|
||||
super().__init__()
|
||||
config = {
|
||||
"app": {
|
||||
"config": {"name": type, "collect_metrics": False, "log_level": "ERROR"}
|
||||
},
|
||||
"chunker": {
|
||||
"chunk_size": 5000,
|
||||
"chunk_overlap": 100,
|
||||
"length_function": "len",
|
||||
"min_chunk_size": 150,
|
||||
},
|
||||
"vectordb": {
|
||||
"provider": "chroma",
|
||||
"config": {
|
||||
"collection_name": type,
|
||||
"dir": f"{db_storage_path()}/{type}",
|
||||
"allow_reset": allow_reset,
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
if embedder_config:
|
||||
config["embedder"] = embedder_config
|
||||
|
||||
self.app = App.from_config(config=config)
|
||||
self.app.llm = FakeLLM()
|
||||
if allow_reset:
|
||||
self.app.reset()
|
||||
|
||||
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
|
||||
self._generate_embedding(value, metadata)
|
||||
|
||||
def search(
|
||||
self,
|
||||
query: str,
|
||||
limit: int = 3,
|
||||
filter: dict = None,
|
||||
score_threshold: float = 0.35,
|
||||
) -> Dict[str, Any]:
|
||||
with suppress_logging():
|
||||
results = (
|
||||
self.app.search(query, limit, where=filter)
|
||||
if filter
|
||||
else self.app.search(query, limit)
|
||||
)
|
||||
return [r for r in results if r["metadata"]["score"] >= score_threshold]
|
||||
|
||||
def _generate_embedding(self, text: str, metadata: Dict[str, Any]) -> Any:
|
||||
with suppress_logging():
|
||||
self.app.add(text, data_type="text", metadata=metadata)
|
||||
@@ -24,6 +24,7 @@ class Task(BaseModel):
|
||||
delegations: int = 0
|
||||
i18n: I18N = I18N()
|
||||
thread: threading.Thread = None
|
||||
prompt_context: Optional[str] = None
|
||||
description: str = Field(description="Description of the actual task.")
|
||||
expected_output: str = Field(
|
||||
description="Clear definition of expected output for the task."
|
||||
@@ -70,6 +71,13 @@ class Task(BaseModel):
|
||||
frozen=True,
|
||||
description="Unique identifier for the object, not set by user.",
|
||||
)
|
||||
human_input: Optional[bool] = Field(
|
||||
description="Whether the task should have a human review the final answer of the agent",
|
||||
default=False,
|
||||
)
|
||||
|
||||
_original_description: str | None = None
|
||||
_original_expected_output: str | None = None
|
||||
|
||||
def __init__(__pydantic_self__, **data):
|
||||
config = data.pop("config", {})
|
||||
@@ -137,6 +145,7 @@ class Task(BaseModel):
|
||||
context.append(task.output.raw_output)
|
||||
context = "\n".join(context)
|
||||
|
||||
self.prompt_context = context
|
||||
tools = tools or self.tools
|
||||
|
||||
if self.async_execution:
|
||||
@@ -189,9 +198,14 @@ class Task(BaseModel):
|
||||
|
||||
def interpolate_inputs(self, inputs: Dict[str, Any]) -> None:
|
||||
"""Interpolate inputs into the task description and expected output."""
|
||||
if self._original_description is None:
|
||||
self._original_description = self.description
|
||||
if self._original_expected_output is None:
|
||||
self._original_expected_output = self.expected_output
|
||||
|
||||
if inputs:
|
||||
self.description = self.description.format(**inputs)
|
||||
self.expected_output = self.expected_output.format(**inputs)
|
||||
self.description = self._original_description.format(**inputs)
|
||||
self.expected_output = self._original_expected_output.format(**inputs)
|
||||
|
||||
def increment_tools_errors(self) -> None:
|
||||
"""Increment the tools errors counter."""
|
||||
|
||||
46
src/crewai/telemetry/STAR_crewai_com_bundle.pem
Normal file
46
src/crewai/telemetry/STAR_crewai_com_bundle.pem
Normal file
@@ -0,0 +1,46 @@
|
||||
-----BEGIN CERTIFICATE-----
|
||||
MIIDqDCCAy6gAwIBAgIRAPNkTmtuAFAjfglGvXvh9R0wCgYIKoZIzj0EAwMwgYgx
|
||||
CzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpOZXcgSmVyc2V5MRQwEgYDVQQHEwtKZXJz
|
||||
ZXkgQ2l0eTEeMBwGA1UEChMVVGhlIFVTRVJUUlVTVCBOZXR3b3JrMS4wLAYDVQQD
|
||||
EyVVU0VSVHJ1c3QgRUNDIENlcnRpZmljYXRpb24gQXV0aG9yaXR5MB4XDTE4MTEw
|
||||
MjAwMDAwMFoXDTMwMTIzMTIzNTk1OVowgY8xCzAJBgNVBAYTAkdCMRswGQYDVQQI
|
||||
ExJHcmVhdGVyIE1hbmNoZXN0ZXIxEDAOBgNVBAcTB1NhbGZvcmQxGDAWBgNVBAoT
|
||||
D1NlY3RpZ28gTGltaXRlZDE3MDUGA1UEAxMuU2VjdGlnbyBFQ0MgRG9tYWluIFZh
|
||||
bGlkYXRpb24gU2VjdXJlIFNlcnZlciBDQTBZMBMGByqGSM49AgEGCCqGSM49AwEH
|
||||
A0IABHkYk8qfbZ5sVwAjBTcLXw9YWsTef1Wj6R7W2SUKiKAgSh16TwUwimNJE4xk
|
||||
IQeV/To14UrOkPAY9z2vaKb71EijggFuMIIBajAfBgNVHSMEGDAWgBQ64QmG1M8Z
|
||||
wpZ2dEl23OA1xmNjmjAdBgNVHQ4EFgQU9oUKOxGG4QR9DqoLLNLuzGR7e64wDgYD
|
||||
VR0PAQH/BAQDAgGGMBIGA1UdEwEB/wQIMAYBAf8CAQAwHQYDVR0lBBYwFAYIKwYB
|
||||
BQUHAwEGCCsGAQUFBwMCMBsGA1UdIAQUMBIwBgYEVR0gADAIBgZngQwBAgEwUAYD
|
||||
VR0fBEkwRzBFoEOgQYY/aHR0cDovL2NybC51c2VydHJ1c3QuY29tL1VTRVJUcnVz
|
||||
dEVDQ0NlcnRpZmljYXRpb25BdXRob3JpdHkuY3JsMHYGCCsGAQUFBwEBBGowaDA/
|
||||
BggrBgEFBQcwAoYzaHR0cDovL2NydC51c2VydHJ1c3QuY29tL1VTRVJUcnVzdEVD
|
||||
Q0FkZFRydXN0Q0EuY3J0MCUGCCsGAQUFBzABhhlodHRwOi8vb2NzcC51c2VydHJ1
|
||||
c3QuY29tMAoGCCqGSM49BAMDA2gAMGUCMEvnx3FcsVwJbZpCYF9z6fDWJtS1UVRs
|
||||
cS0chWBNKPFNpvDKdrdKRe+oAkr2jU+ubgIxAODheSr2XhcA7oz9HmedGdMhlrd9
|
||||
4ToKFbZl+/OnFFzqnvOhcjHvClECEQcKmc8fmA==
|
||||
-----END CERTIFICATE-----
|
||||
|
||||
-----BEGIN CERTIFICATE-----
|
||||
MIID0zCCArugAwIBAgIQVmcdBOpPmUxvEIFHWdJ1lDANBgkqhkiG9w0BAQwFADB7
|
||||
MQswCQYDVQQGEwJHQjEbMBkGA1UECAwSR3JlYXRlciBNYW5jaGVzdGVyMRAwDgYD
|
||||
VQQHDAdTYWxmb3JkMRowGAYDVQQKDBFDb21vZG8gQ0EgTGltaXRlZDEhMB8GA1UE
|
||||
AwwYQUFBIENlcnRpZmljYXRlIFNlcnZpY2VzMB4XDTE5MDMxMjAwMDAwMFoXDTI4
|
||||
MTIzMTIzNTk1OVowgYgxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpOZXcgSmVyc2V5
|
||||
MRQwEgYDVQQHEwtKZXJzZXkgQ2l0eTEeMBwGA1UEChMVVGhlIFVTRVJUUlVTVCBO
|
||||
ZXR3b3JrMS4wLAYDVQQDEyVVU0VSVHJ1c3QgRUNDIENlcnRpZmljYXRpb24gQXV0
|
||||
aG9yaXR5MHYwEAYHKoZIzj0CAQYFK4EEACIDYgAEGqxUWqn5aCPnetUkb1PGWthL
|
||||
q8bVttHmc3Gu3ZzWDGH926CJA7gFFOxXzu5dP+Ihs8731Ip54KODfi2X0GHE8Znc
|
||||
JZFjq38wo7Rw4sehM5zzvy5cU7Ffs30yf4o043l5o4HyMIHvMB8GA1UdIwQYMBaA
|
||||
FKARCiM+lvEH7OKvKe+CpX/QMKS0MB0GA1UdDgQWBBQ64QmG1M8ZwpZ2dEl23OA1
|
||||
xmNjmjAOBgNVHQ8BAf8EBAMCAYYwDwYDVR0TAQH/BAUwAwEB/zARBgNVHSAECjAI
|
||||
MAYGBFUdIAAwQwYDVR0fBDwwOjA4oDagNIYyaHR0cDovL2NybC5jb21vZG9jYS5j
|
||||
b20vQUFBQ2VydGlmaWNhdGVTZXJ2aWNlcy5jcmwwNAYIKwYBBQUHAQEEKDAmMCQG
|
||||
CCsGAQUFBzABhhhodHRwOi8vb2NzcC5jb21vZG9jYS5jb20wDQYJKoZIhvcNAQEM
|
||||
BQADggEBABns652JLCALBIAdGN5CmXKZFjK9Dpx1WywV4ilAbe7/ctvbq5AfjJXy
|
||||
ij0IckKJUAfiORVsAYfZFhr1wHUrxeZWEQff2Ji8fJ8ZOd+LygBkc7xGEJuTI42+
|
||||
FsMuCIKchjN0djsoTI0DQoWz4rIjQtUfenVqGtF8qmchxDM6OW1TyaLtYiKou+JV
|
||||
bJlsQ2uRl9EMC5MCHdK8aXdJ5htN978UeAOwproLtOGFfy/cQjutdAFI3tZs4RmY
|
||||
CV4Ks2dH/hzg1cEo70qLRDEmBDeNiXQ2Lu+lIg+DdEmSx/cQwgwp+7e9un/jX9Wf
|
||||
8qn0dNW44bOwgeThpWOjzOoEeJBuv/c=
|
||||
-----END CERTIFICATE-----
|
||||
@@ -1,3 +1,5 @@
|
||||
import asyncio
|
||||
import importlib.resources
|
||||
import json
|
||||
import os
|
||||
import platform
|
||||
@@ -40,25 +42,40 @@ class Telemetry:
|
||||
def __init__(self):
|
||||
self.ready = False
|
||||
try:
|
||||
telemetry_endpoint = "http://telemetry.crewai.com:4318"
|
||||
telemetry_endpoint = "https://telemetry.crewai.com:4319"
|
||||
self.resource = Resource(
|
||||
attributes={SERVICE_NAME: "crewAI-telemetry"},
|
||||
)
|
||||
self.provider = TracerProvider(resource=self.resource)
|
||||
processor = BatchSpanProcessor(
|
||||
OTLPSpanExporter(endpoint=f"{telemetry_endpoint}/v1/traces", timeout=15)
|
||||
cert_file = importlib.resources.files("crewai.telemetry").joinpath(
|
||||
"STAR_crewai_com_bundle.pem"
|
||||
)
|
||||
processor = BatchSpanProcessor(
|
||||
OTLPSpanExporter(
|
||||
endpoint=f"{telemetry_endpoint}/v1/traces",
|
||||
certificate_file=cert_file,
|
||||
timeout=30,
|
||||
)
|
||||
)
|
||||
|
||||
self.provider.add_span_processor(processor)
|
||||
self.ready = True
|
||||
except Exception:
|
||||
pass
|
||||
except BaseException as e:
|
||||
if isinstance(
|
||||
e,
|
||||
(SystemExit, KeyboardInterrupt, GeneratorExit, asyncio.CancelledError),
|
||||
):
|
||||
raise # Re-raise the exception to not interfere with system signals
|
||||
self.ready = False
|
||||
|
||||
def set_tracer(self):
|
||||
if self.ready:
|
||||
try:
|
||||
trace.set_tracer_provider(self.provider)
|
||||
except Exception:
|
||||
pass
|
||||
provider = trace.get_tracer_provider()
|
||||
if provider is None:
|
||||
try:
|
||||
trace.set_tracer_provider(self.provider)
|
||||
except Exception:
|
||||
self.ready = False
|
||||
|
||||
def crew_creation(self, crew):
|
||||
"""Records the creation of a crew."""
|
||||
@@ -92,7 +109,9 @@ class Telemetry:
|
||||
"i18n": agent.i18n.language,
|
||||
"llm": json.dumps(self._safe_llm_attributes(agent.llm)),
|
||||
"delegation_enabled?": agent.allow_delegation,
|
||||
"tools_names": [tool.name for tool in agent.tools],
|
||||
"tools_names": [
|
||||
tool.name.casefold() for tool in agent.tools
|
||||
],
|
||||
}
|
||||
for agent in crew.agents
|
||||
]
|
||||
@@ -107,7 +126,9 @@ class Telemetry:
|
||||
"id": str(task.id),
|
||||
"async_execution?": task.async_execution,
|
||||
"agent_role": task.agent.role if task.agent else "None",
|
||||
"tools_names": [tool.name for tool in task.tools],
|
||||
"tools_names": [
|
||||
tool.name.casefold() for tool in task.tools
|
||||
],
|
||||
}
|
||||
for task in crew.tasks
|
||||
]
|
||||
@@ -195,7 +216,9 @@ class Telemetry:
|
||||
"i18n": agent.i18n.language,
|
||||
"llm": json.dumps(self._safe_llm_attributes(agent.llm)),
|
||||
"delegation_enabled?": agent.allow_delegation,
|
||||
"tools_names": [tool.name for tool in agent.tools],
|
||||
"tools_names": [
|
||||
tool.name.casefold() for tool in agent.tools
|
||||
],
|
||||
}
|
||||
for agent in crew.agents
|
||||
]
|
||||
@@ -215,7 +238,9 @@ class Telemetry:
|
||||
"context": [task.description for task in task.context]
|
||||
if task.context
|
||||
else "None",
|
||||
"tools_names": [tool.name for tool in task.tools],
|
||||
"tools_names": [
|
||||
tool.name.casefold() for tool in task.tools
|
||||
],
|
||||
}
|
||||
for task in crew.tasks
|
||||
]
|
||||
|
||||
@@ -15,22 +15,23 @@ class AgentTools(BaseModel):
|
||||
i18n: I18N = Field(default=I18N(), description="Internationalization settings.")
|
||||
|
||||
def tools(self):
|
||||
return [
|
||||
tools = [
|
||||
StructuredTool.from_function(
|
||||
func=self.delegate_work,
|
||||
name="Delegate work to co-worker",
|
||||
description=self.i18n.tools("delegate_work").format(
|
||||
coworkers=[f"{agent.role}" for agent in self.agents]
|
||||
coworkers=f"[{', '.join([f'{agent.role}' for agent in self.agents])}]"
|
||||
),
|
||||
),
|
||||
StructuredTool.from_function(
|
||||
func=self.ask_question,
|
||||
name="Ask question to co-worker",
|
||||
description=self.i18n.tools("ask_question").format(
|
||||
coworkers=[f"{agent.role}" for agent in self.agents]
|
||||
coworkers=f"[{', '.join([f'{agent.role}' for agent in self.agents])}]"
|
||||
),
|
||||
),
|
||||
]
|
||||
return tools
|
||||
|
||||
def delegate_work(self, coworker: str, task: str, context: str):
|
||||
"""Useful to delegate a specific task to a coworker passing all necessary context and names."""
|
||||
@@ -46,16 +47,20 @@ class AgentTools(BaseModel):
|
||||
agent = [
|
||||
available_agent
|
||||
for available_agent in self.agents
|
||||
if available_agent.role.strip().lower() == agent.strip().lower()
|
||||
if available_agent.role.casefold().strip() == agent.casefold().strip()
|
||||
]
|
||||
except:
|
||||
return self.i18n.errors("agent_tool_unexsiting_coworker").format(
|
||||
coworkers="\n".join([f"- {agent.role}" for agent in self.agents])
|
||||
coworkers="\n".join(
|
||||
[f"- {agent.role.casefold()}" for agent in self.agents]
|
||||
)
|
||||
)
|
||||
|
||||
if not agent:
|
||||
return self.i18n.errors("agent_tool_unexsiting_coworker").format(
|
||||
coworkers="\n".join([f"- {agent.role}" for agent in self.agents])
|
||||
coworkers="\n".join(
|
||||
[f"- {agent.role.casefold()}" for agent in self.agents]
|
||||
)
|
||||
)
|
||||
|
||||
agent = agent[0]
|
||||
|
||||
@@ -30,6 +30,7 @@ class ToolUsage:
|
||||
task: Task being executed.
|
||||
tools_handler: Tools handler that will manage the tool usage.
|
||||
tools: List of tools available for the agent.
|
||||
original_tools: Original tools available for the agent before being converted to BaseTool.
|
||||
tools_description: Description of the tools available for the agent.
|
||||
tools_names: Names of the tools available for the agent.
|
||||
function_calling_llm: Language model to be used for the tool usage.
|
||||
@@ -39,6 +40,7 @@ class ToolUsage:
|
||||
self,
|
||||
tools_handler: ToolsHandler,
|
||||
tools: List[BaseTool],
|
||||
original_tools: List[Any],
|
||||
tools_description: str,
|
||||
tools_names: str,
|
||||
task: Any,
|
||||
@@ -54,6 +56,7 @@ class ToolUsage:
|
||||
self.tools_description = tools_description
|
||||
self.tools_names = tools_names
|
||||
self.tools_handler = tools_handler
|
||||
self.original_tools = original_tools
|
||||
self.tools = tools
|
||||
self.task = task
|
||||
self.action = action
|
||||
@@ -112,9 +115,12 @@ class ToolUsage:
|
||||
except Exception:
|
||||
self.task.increment_tools_errors()
|
||||
|
||||
result = self.tools_handler.cache.read(
|
||||
tool=calling.tool_name, input=calling.arguments
|
||||
)
|
||||
result = None
|
||||
|
||||
if self.tools_handler.cache:
|
||||
result = self.tools_handler.cache.read(
|
||||
tool=calling.tool_name, input=calling.arguments
|
||||
)
|
||||
|
||||
if not result:
|
||||
try:
|
||||
@@ -159,7 +165,22 @@ class ToolUsage:
|
||||
agentops.record(agentops.ErrorEvent(details=e, trigger_event=tool_event))
|
||||
return self.use(calling=calling, tool_string=tool_string)
|
||||
|
||||
self.tools_handler.on_tool_use(calling=calling, output=result)
|
||||
if self.tools_handler:
|
||||
should_cache = True
|
||||
original_tool = next(
|
||||
(ot for ot in self.original_tools if ot.name == tool.name), None
|
||||
)
|
||||
if (
|
||||
hasattr(original_tool, "cache_function")
|
||||
and original_tool.cache_function
|
||||
):
|
||||
should_cache = original_tool.cache_function(
|
||||
calling.arguments, result
|
||||
)
|
||||
|
||||
self.tools_handler.on_tool_use(
|
||||
calling=calling, output=result, should_cache=should_cache
|
||||
)
|
||||
|
||||
self._printer.print(content=f"\n\n{result}\n", color="yellow")
|
||||
agentops.record(tool_event)
|
||||
@@ -190,6 +211,8 @@ class ToolUsage:
|
||||
def _check_tool_repeated_usage(
|
||||
self, calling: Union[ToolCalling, InstructorToolCalling]
|
||||
) -> None:
|
||||
if not self.tools_handler:
|
||||
return False
|
||||
if last_tool_usage := self.tools_handler.last_used_tool:
|
||||
return (calling.tool_name == last_tool_usage.tool_name) and (
|
||||
calling.arguments == last_tool_usage.arguments
|
||||
@@ -247,12 +270,12 @@ class ToolUsage:
|
||||
model=model,
|
||||
instructions=dedent(
|
||||
"""\
|
||||
The schema should have the following structure, only two keys:
|
||||
- tool_name: str
|
||||
- arguments: dict (with all arguments being passed)
|
||||
The schema should have the following structure, only two keys:
|
||||
- tool_name: str
|
||||
- arguments: dict (with all arguments being passed)
|
||||
|
||||
Example:
|
||||
{"tool_name": "tool name", "arguments": {"arg_name1": "value", "arg_name2": 2}}""",
|
||||
Example:
|
||||
{"tool_name": "tool name", "arguments": {"arg_name1": "value", "arg_name2": 2}}""",
|
||||
),
|
||||
max_attemps=1,
|
||||
)
|
||||
|
||||
@@ -1,27 +0,0 @@
|
||||
{
|
||||
"hierarchical_manager_agent": {
|
||||
"role": "Διευθυντής Ομάδας",
|
||||
"goal": "Διαχειρίσου την ομάδα σου για να ολοκληρώσει την εργασία με τον καλύτερο δυνατό τρόπο.",
|
||||
"backstory": "Είσαι ένας έμπειρος διευθυντής με την ικανότητα να βγάζεις το καλύτερο από την ομάδα σου.\nΕίσαι επίσης γνωστός για την ικανότητά σου να αναθέτεις εργασίες στους σωστούς ανθρώπους και να κάνεις τις σωστές ερωτήσεις για να πάρεις το καλύτερο από την ομάδα σου.\nΑκόμα κι αν δεν εκτελείς εργασίες μόνος σου, έχεις πολλή εμπειρία στον τομέα, που σου επιτρέπει να αξιολογείς σωστά τη δουλειά των μελών της ομάδας σου."
|
||||
},
|
||||
"slices": {
|
||||
"observation": "\nΠαρατήρηση",
|
||||
"task": "Αρχή! Αυτό είναι ΠΟΛΥ σημαντικό για εσάς, η δουλειά σας εξαρτάται από αυτό!\n\nΤρέχουσα εργασία: {input}",
|
||||
"memory": "Αυτή είναι η περίληψη της μέχρι τώρα δουλειάς σας:\n{chat_history}",
|
||||
"role_playing": "Είσαι {role}.\n{backstory}\n\nΟ προσωπικός σας στόχος είναι: {goal}",
|
||||
"tools": "ΕΡΓΑΛΕΙΑ:\n------\nΈχετε πρόσβαση μόνο στα ακόλουθα εργαλεία:\n\n{tools}\n\nΓια να χρησιμοποιήσετε ένα εργαλείο, χρησιμοποιήστε την ακόλουθη ακριβώς μορφή:\n\n```\nThought: Χρειάζεται να χρησιμοποιήσω κάποιο εργαλείο; Ναι\nΕνέργεια: το εργαλείο που θέλετε να χρησιμοποιήσετε, θα πρέπει να είναι ένα από τα [{tool_names}], μόνο το όνομα.\nΕισαγωγή ενέργειας: Οποιαδήποτε και όλες οι σχετικές πληροφορίες και το πλαίσιο χρήσης του εργαλείου\nΠαρατήρηση: το αποτέλεσμα της χρήσης του εργαλείου\n```\n\nΌταν έχετε μια απάντηση για την εργασία σας ή εάν δεν χρειάζεται να χρησιμοποιήσετε ένα εργαλείο, ΠΡΕΠΕΙ να χρησιμοποιήσετε τη μορφή:\n\n```\nΣκέψη: Πρέπει να χρησιμοποιήσω ένα εργαλείο ? Όχι\nΤελική απάντηση: [η απάντησή σας εδώ]```",
|
||||
"task_with_context": "{task}\nΑυτό είναι το πλαίσιο με το οποίο εργάζεστε:\n{context}",
|
||||
"expected_output": "Η τελική σας απάντηση πρέπει να είναι: {expected_output}"
|
||||
},
|
||||
"errors": {
|
||||
"force_final_answer": "Στην πραγματικότητα, χρησιμοποίησα πάρα πολλά εργαλεία, οπότε θα σταματήσω τώρα και θα σας δώσω την απόλυτη ΚΑΛΥΤΕΡΗ τελική μου απάντηση ΤΩΡΑ, χρησιμοποιώντας την αναμενόμενη μορφή: ```\nΣκέφτηκα: Χρειάζεται να χρησιμοποιήσω ένα εργαλείο; Όχι\nΤελική απάντηση: [η απάντησή σας εδώ]```",
|
||||
"agent_tool_unexsiting_coworker": "\nΣφάλμα κατά την εκτέλεση του εργαλείου. Ο συνάδελφος που αναφέρεται στο Action Input δεν βρέθηκε, πρέπει να είναι μία από τις ακόλουθες επιλογές:\n{coworkers}..\n",
|
||||
"task_repeated_usage": "Μόλις χρησιμοποίησα το εργαλείο {tool} με είσοδο {tool_input}. Άρα το ξέρω ήδη και πρέπει να σταματήσω να το χρησιμοποιώ στη σειρά με την ίδια είσοδο. \nΘα μπορούσα να δώσω την τελική μου απάντηση εάν είμαι έτοιμος, χρησιμοποιώντας ακριβώς την αναμενόμενη μορφή παρακάτω: \n\nΣκέφτηκα: Χρειάζεται να χρησιμοποιήσω κάποιο εργαλείο; Όχι\nΤελική απάντηση: [η απάντησή σας εδώ]\n",
|
||||
"tool_usage_error": "Φαίνεται ότι αντιμετωπίσαμε ένα απροσδόκητο σφάλμα κατά την προσπάθεια χρήσης του εργαλείου.",
|
||||
"tool_usage_exception": "Φαίνεται ότι αντιμετωπίσαμε ένα απροσδόκητο σφάλμα κατά την προσπάθεια χρήσης του εργαλείου. Αυτό ήταν το σφάλμα: {error}"
|
||||
},
|
||||
"tools": {
|
||||
"delegate_work": "Αναθέστε μια συγκεκριμένη εργασία σε έναν από τους παρακάτω συναδέλφους:\n{coworkers}.\nΗ εισαγωγή σε αυτό το εργαλείο θα πρέπει να είναι ο ρόλος του συναδέλφου, η εργασία που θέλετε να κάνει και ΟΛΟ το απαραίτητο πλαίσιο για την εκτέλεση της εργασίας, δεν γνωρίζουν τίποτα για την εργασία, γι' αυτό μοιραστείτε απολύτως όλα όσα γνωρίζετε, μην αναφέρετε πράγματα, αλλά εξηγήστε τα.",
|
||||
"ask_question": "Κάντε μια συγκεκριμένη ερώτηση σε έναν από τους παρακάτω συναδέλφους:\n{coworkers}.\nΗ είσοδος σε αυτό το εργαλείο θα πρέπει να είναι ο ρόλος του συναδέλφου, η ερώτηση που έχετε για αυτόν και ΟΛΟ το απαραίτητο πλαίσιο για να κάνετε σωστά την ερώτηση, δεν γνωρίζουν τίποτα για την ερώτηση, γι' αυτό μοιραστείτε απολύτως όλα όσα γνωρίζετε, μην αναφέρετε πράγματα, αλλά εξηγήστε τα."
|
||||
}
|
||||
}
|
||||
@@ -6,16 +6,18 @@
|
||||
},
|
||||
"slices": {
|
||||
"observation": "\nObservation",
|
||||
"task": "\n\nCurrent Task: {input}\n\nBegin! This is VERY important to you, use the tools available and give your best Final Answer, your job depends on it!\n\nThought: ",
|
||||
"memory": "This is the summary of your work so far:\n{chat_history}",
|
||||
"task": "\nCurrent Task: {input}\n\nBegin! This is VERY important to you, use the tools available and give your best Final Answer, your job depends on it!\n\nThought: ",
|
||||
"memory": "\n\n# Useful context: \n{memory}",
|
||||
"role_playing": "You are {role}. {backstory}\nYour personal goal is: {goal}",
|
||||
"tools": "\n\nYou ONLY have access to the following tools, and should NEVER make up tools that are not listed here:\n\n{tools}\n\nUse the following format:\n\nThought: you should always think about what to do\nAction: the action to take, only one name of [{tool_names}], just the name, exactly as it's written.\nAction Input: the input to the action, just a simple a python dictionary using \" to wrap keys and values.\nObservation: the result of the action\n\nOnce all necessary information is gathered:\n\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n",
|
||||
"no_tools": "To give my best complete final answer to the task use the exact following format:\n\nThought: I now can give a great answer\nFinal Answer: my best complete final answer to the task.\nYour final answer must be the great and the most complete as possible, it must be outcome described.\n\nI MUST use these formats, my job depends on it!\n\nThought: ",
|
||||
"tools": "\nYou ONLY have access to the following tools, and should NEVER make up tools that are not listed here:\n\n{tools}\n\nUse the following format:\n\nThought: you should always think about what to do\nAction: the action to take, only one name of [{tool_names}], just the name, exactly as it's written.\nAction Input: the input to the action, just a simple a python dictionary using \" to wrap keys and values.\nObservation: the result of the action\n\nOnce all necessary information is gathered:\n\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n",
|
||||
"no_tools": "To give my best complete final answer to the task use the exact following format:\n\nThought: I now can give a great answer\nFinal Answer: my best complete final answer to the task.\nYour final answer must be the great and the most complete as possible, it must be outcome described.\n\nI MUST use these formats, my job depends on it!",
|
||||
"format": "I MUST either use a tool (use one at time) OR give my best final answer. To Use the following format:\n\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action, dictionary\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now can give a great answer\nFinal Answer: my best complete final answer to the task.\nYour final answer must be the great and the most complete as possible, it must be outcome described\n\n ",
|
||||
"final_answer_format": "If you don't need to use any more tools, you must give your best complete final answer, make sure it satisfy the expect criteria, use the EXACT format below:\n\nThought: I now can give a great answer\nFinal Answer: my best complete final answer to the task.\n\n",
|
||||
"format_without_tools": "\nSorry, I didn't use the right format. I MUST either use a tool (among the available ones), OR give my best final answer.\nI just remembered the expected format I must follow:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now can give a great answer\nFinal Answer: my best complete final answer to the task\nYour final answer must be the great and the most complete as possible, it must be outcome described\n\n",
|
||||
"task_with_context": "{task}\n\nThis is the context you're working with:\n{context}",
|
||||
"expected_output": "\nThis is the expect criteria for your final answer: {expected_output} \n you MUST return the actual complete content as the final answer, not a summary."
|
||||
"expected_output": "\nThis is the expect criteria for your final answer: {expected_output} \n you MUST return the actual complete content as the final answer, not a summary.",
|
||||
"human_feedback": "You got human feedback on your work, re-avaluate it and give a new Final Answer when ready.\n {human_feedback}",
|
||||
"getting_input": "This is the agent final answer: {final_answer}\nPlease provide a feedback: "
|
||||
},
|
||||
"errors": {
|
||||
"unexpected_format": "\nSorry, I didn't use the expected format, I MUST either use a tool (use one at time) OR give my best final answer.\n",
|
||||
|
||||
61
src/crewai/utilities/evaluators/task_evaluator.py
Normal file
61
src/crewai/utilities/evaluators/task_evaluator.py
Normal file
@@ -0,0 +1,61 @@
|
||||
from typing import List
|
||||
|
||||
from langchain_openai import ChatOpenAI
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai.utilities import Converter
|
||||
from crewai.utilities.pydantic_schema_parser import PydanticSchemaParser
|
||||
|
||||
|
||||
class Entity(BaseModel):
|
||||
name: str = Field(description="The name of the entity.")
|
||||
type: str = Field(description="The type of the entity.")
|
||||
description: str = Field(description="Description of the entity.")
|
||||
relationships: List[str] = Field(description="Relationships of the entity.")
|
||||
|
||||
|
||||
class TaskEvaluation(BaseModel):
|
||||
suggestions: List[str] = Field(
|
||||
description="Suggestions to improve future similar tasks."
|
||||
)
|
||||
quality: float = Field(
|
||||
description="A score from 0 to 10 evaluating on completion, quality, and overall performance, all taking into account the task description, expected output, and the result of the task."
|
||||
)
|
||||
entities: List[Entity] = Field(
|
||||
description="Entities extracted from the task output."
|
||||
)
|
||||
|
||||
|
||||
class TaskEvaluator:
|
||||
def __init__(self, original_agent):
|
||||
self.llm = original_agent.llm
|
||||
|
||||
def evaluate(self, task, ouput) -> TaskEvaluation:
|
||||
evaluation_query = (
|
||||
f"Assess the quality of the task completed based on the description, expected output, and actual results.\n\n"
|
||||
f"Task Description:\n{task.description}\n\n"
|
||||
f"Expected Output:\n{task.expected_output}\n\n"
|
||||
f"Actual Output:\n{ouput}\n\n"
|
||||
"Please provide:\n"
|
||||
"- Bullet points suggestions to improve future similar tasks\n"
|
||||
"- A score from 0 to 10 evaluating on completion, quality, and overall performance"
|
||||
"- Entities extracted from the task output, if any, their type, description, and relationships"
|
||||
)
|
||||
|
||||
instructions = "I'm gonna convert this raw text into valid JSON."
|
||||
|
||||
if not self._is_gpt(self.llm):
|
||||
model_schema = PydanticSchemaParser(model=TaskEvaluation).get_schema()
|
||||
instructions = f"{instructions}\n\nThe json should have the following structure, with the following keys:\n{model_schema}"
|
||||
|
||||
converter = Converter(
|
||||
llm=self.llm,
|
||||
text=evaluation_query,
|
||||
model=TaskEvaluation,
|
||||
instructions=instructions,
|
||||
)
|
||||
|
||||
return converter.to_pydantic()
|
||||
|
||||
def _is_gpt(self, llm) -> bool:
|
||||
return isinstance(llm, ChatOpenAI) and llm.openai_api_base == None
|
||||
@@ -7,6 +7,10 @@ from pydantic import BaseModel, Field, PrivateAttr, ValidationError, model_valid
|
||||
|
||||
class I18N(BaseModel):
|
||||
_translations: Dict[str, Dict[str, str]] = PrivateAttr()
|
||||
language_file: Optional[str] = Field(
|
||||
default=None,
|
||||
description="Path to the translation file to load",
|
||||
)
|
||||
language: Optional[str] = Field(
|
||||
default="en",
|
||||
description="Language used to load translations",
|
||||
@@ -16,13 +20,17 @@ class I18N(BaseModel):
|
||||
def load_translation(self) -> "I18N":
|
||||
"""Load translations from a JSON file based on the specified language."""
|
||||
try:
|
||||
dir_path = os.path.dirname(os.path.realpath(__file__))
|
||||
prompts_path = os.path.join(
|
||||
dir_path, f"../translations/{self.language}.json"
|
||||
)
|
||||
if self.language_file:
|
||||
with open(self.language_file, "r") as f:
|
||||
self._translations = json.load(f)
|
||||
else:
|
||||
dir_path = os.path.dirname(os.path.realpath(__file__))
|
||||
prompts_path = os.path.join(
|
||||
dir_path, f"../translations/{self.language}.json"
|
||||
)
|
||||
|
||||
with open(prompts_path, "r") as f:
|
||||
self._translations = json.load(f)
|
||||
with open(prompts_path, "r") as f:
|
||||
self._translations = json.load(f)
|
||||
except FileNotFoundError:
|
||||
raise ValidationError(
|
||||
f"Translation file for language '{self.language}' not found."
|
||||
|
||||
12
src/crewai/utilities/paths.py
Normal file
12
src/crewai/utilities/paths.py
Normal file
@@ -0,0 +1,12 @@
|
||||
from pathlib import Path
|
||||
|
||||
import appdirs
|
||||
|
||||
|
||||
def db_storage_path():
|
||||
app_name = "crewai"
|
||||
app_author = "CrewAI"
|
||||
|
||||
data_dir = Path(appdirs.user_data_dir(app_name, app_author))
|
||||
data_dir.mkdir(parents=True, exist_ok=True)
|
||||
return data_dir
|
||||
@@ -13,16 +13,6 @@ class Prompts(BaseModel):
|
||||
tools: list[Any] = Field(default=[])
|
||||
SCRATCHPAD_SLICE: ClassVar[str] = "\n{agent_scratchpad}"
|
||||
|
||||
def task_execution_with_memory(self) -> BasePromptTemplate:
|
||||
"""Generate a prompt for task execution with memory components."""
|
||||
slices = ["role_playing"]
|
||||
if len(self.tools) > 0:
|
||||
slices.append("tools")
|
||||
else:
|
||||
slices.append("no_tools")
|
||||
slices.extend(["memory", "task"])
|
||||
return self._build_prompt(slices)
|
||||
|
||||
def task_execution_without_tools(self) -> BasePromptTemplate:
|
||||
"""Generate a prompt for task execution without tools components."""
|
||||
return self._build_prompt(["role_playing", "task"])
|
||||
|
||||
Reference in New Issue
Block a user