Update inner tool usage logic to support both regular and function calling

This commit is contained in:
João Moura
2024-03-02 13:54:23 -03:00
parent c12283bb16
commit 42eeec5897
10 changed files with 208 additions and 142 deletions

View File

@@ -41,7 +41,6 @@ class Crew(BaseModel):
full_output: Whether the crew should return the full output with all tasks outputs or just the final output.
step_callback: Callback to be executed after each step for every agents execution.
share_crew: Whether you want to share the complete crew infromation and execution with crewAI to make the library better, and allow us to train models.
inputs: Any inputs that the crew will use in tasks or agents, it will be interpolated in promtps.
"""
__hash__ = object.__hash__ # type: ignore
@@ -68,10 +67,6 @@ class Crew(BaseModel):
function_calling_llm: Optional[Any] = Field(
description="Language model that will run the agent.", default=None
)
inputs: Optional[Dict[str, Any]] = Field(
description="Any inputs that the crew will use in tasks or agents, it will be interpolated in promtps.",
default=None,
)
config: Optional[Union[Json, Dict[str, Any]]] = Field(default=None)
id: UUID4 = Field(default_factory=uuid.uuid4, frozen=True)
share_crew: Optional[bool] = Field(default=False)
@@ -134,15 +129,6 @@ class Crew(BaseModel):
)
return self
@model_validator(mode="after")
def interpolate_inputs(self):
"""Interpolates the inputs in the tasks and agents."""
for task in self.tasks:
task.interpolate_inputs(self.inputs)
for agent in self.agents:
agent.interpolate_inputs(self.inputs)
return self
@model_validator(mode="after")
def check_config(self):
"""Validates that the crew is properly configured with agents and tasks."""
@@ -191,9 +177,10 @@ class Crew(BaseModel):
del task_config["agent"]
return Task(**task_config, agent=task_agent)
def kickoff(self) -> str:
def kickoff(self, inputs: Optional[Dict[str, Any]] = {}) -> str:
"""Starts the crew to work on its assigned tasks."""
self._execution_span = self._telemetry.crew_execution_span(self)
self._interpolate_inputs(inputs)
for agent in self.agents:
agent.i18n = I18N(language=self.language)
@@ -231,7 +218,7 @@ class Crew(BaseModel):
"""Executes tasks sequentially and returns the final output."""
task_output = ""
for task in self.tasks:
if task.agent is not None and task.agent.allow_delegation:
if task.agent.allow_delegation:
agents_for_delegation = [
agent for agent in self.agents if agent != task.agent
]
@@ -281,6 +268,11 @@ class Crew(BaseModel):
self._finish_execution(task_output)
return self._format_output(task_output), manager._token_process.get_summary()
def _interpolate_inputs(self, inputs: Dict[str, Any]) -> str:
"""Interpolates the inputs in the tasks and agents."""
[task.interpolate_inputs(inputs) for task in self.tasks]
[agent.interpolate_inputs(inputs) for agent in self.agents]
def _format_output(self, output: str) -> str:
"""Formats the output of the crew execution."""
if self.full_output: