Merge branch 'main' into bug_fix

This commit is contained in:
Lucas Gomide
2025-04-02 10:00:53 -03:00
committed by GitHub
47 changed files with 2749 additions and 444 deletions

View File

@@ -1621,6 +1621,38 @@ def test_agent_with_knowledge_sources():
assert "red" in result.raw.lower()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_with_knowledge_sources_extensive_role():
content = "Brandon's favorite color is red and he likes Mexican food."
string_source = StringKnowledgeSource(content=content)
with patch(
"crewai.knowledge.storage.knowledge_storage.KnowledgeStorage"
) as MockKnowledge:
mock_knowledge_instance = MockKnowledge.return_value
mock_knowledge_instance.sources = [string_source]
mock_knowledge_instance.query.return_value = [{"content": content}]
agent = Agent(
role="Information Agent with extensive role description that is longer than 80 characters",
goal="Provide information based on knowledge sources",
backstory="You have access to specific knowledge sources.",
llm=LLM(model="gpt-4o-mini"),
knowledge_sources=[string_source],
)
task = Task(
description="What is Brandon's favorite color?",
expected_output="Brandon's favorite color.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
assert "red" in result.raw.lower()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_with_knowledge_sources_works_with_copy():
content = "Brandon's favorite color is red and he likes Mexican food."

File diff suppressed because one or more lines are too long

View File

@@ -710,4 +710,117 @@ interactions:
- req_4ceac9bc8ae57f631959b91d2ab63c4d
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "system", "content": "You are Test Agent. Test agent
backstory\nYour personal goal is: Test agent goal\nTo give my best complete
final answer to the task respond using the exact following format:\n\nThought:
I now can give a great answer\nFinal Answer: Your final answer must be the great
and the most complete as possible, it must be outcome described.\n\nI MUST use
these formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent
Task: Test task description\n\nThis is the expected criteria for your final
answer: Test expected output\nyou MUST return the actual complete content as
the final answer, not a summary.\n\nBegin! This is VERY important to you, use
the tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '840'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-BExKOliqPgvHyozZaBu5oN50CHtsa\",\n \"object\":
\"chat.completion\",\n \"created\": 1742904348,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: Test expected output\",\n \"refusal\": null,\n \"annotations\":
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 158,\n \"completion_tokens\":
15,\n \"total_tokens\": 173,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_90d33c15d4\"\n}\n"
headers:
CF-RAY:
- 925e4749af02f227-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 25 Mar 2025 12:05:48 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=VHa7Z7dJYptxXpaMxgldvK6HqIM.m74xpi.80N_EBDc-1742904348-1.0.1.1-VthD2riCSnAprFYhOZxfIrTjT33tybJHpHWB25Q_Hx4vuACCyF00tix6e6eorDReGcW3jb5cUzbGqYi47TrMsS4LYjxBv5eCo7cU9OuFajs;
path=/; expires=Tue, 25-Mar-25 12:35:48 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=Is8fSaH3lU8yHyT3fI7cRZiDqIYSI6sPpzfzvEV8HMc-1742904348760-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '377'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '50000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '49999'
x-ratelimit-remaining-tokens:
- '149999822'
x-ratelimit-reset-requests:
- 1ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_fd6b93e3b1a30868482c72306e7f63c2
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -0,0 +1,378 @@
interactions:
- request:
body: !!binary |
CpIKCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkS6QkKEgoQY3Jld2FpLnRl
bGVtZXRyeRLBBwoQ08SlQ6w2FsCauTgZCqberRIITfOsgNi1qJkqDENyZXcgQ3JlYXRlZDABOdjG
6D/PcDAYQahPEkDPcDAYShsKDmNyZXdhaV92ZXJzaW9uEgkKBzAuMTA4LjBKGgoOcHl0aG9uX3Zl
cnNpb24SCAoGMy4xMi45Si4KCGNyZXdfa2V5EiIKIDkwNzMxMTU4MzVlMWNhZjJhNmUxNTIyZDA1
YTBiNTFkSjEKB2NyZXdfaWQSJgokMzdjOGM4NzgtN2NmZC00YjEyLWE4YzctYzIyZDZlOTIxODBk
ShwKDGNyZXdfcHJvY2VzcxIMCgpzZXF1ZW50aWFsShEKC2NyZXdfbWVtb3J5EgIQAEoaChRjcmV3
X251bWJlcl9vZl90YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIYAUrgAgoLY3Jl
d19hZ2VudHMS0AIKzQJbeyJrZXkiOiAiNzYyM2ZjNGY3ZDk0Y2YzZmRiZmNjMjlmYjBiMDIyYmIi
LCAiaWQiOiAiYmVjMjljMTAtOTljYi00MzQwLWIwYTItMWU1NTVkNGRmZGM0IiwgInJvbGUiOiAi
VmlzdWFsIFF1YWxpdHkgSW5zcGVjdG9yIiwgInZlcmJvc2U/IjogdHJ1ZSwgIm1heF9pdGVyIjog
MjUsICJtYXhfcnBtIjogbnVsbCwgImZ1bmN0aW9uX2NhbGxpbmdfbGxtIjogIiIsICJsbG0iOiAi
b3BlbmFpL2dwdC00byIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2Rl
X2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6
IFtdfV1KjQIKCmNyZXdfdGFza3MS/gEK+wFbeyJrZXkiOiAiMDExM2E5ZTg0N2M2NjI2ZDY0ZDZk
Yzk4M2IwNDA5MTgiLCAiaWQiOiAiZWQzYmY1YWUtZTBjMS00MjIxLWFhYTgtMThlNjVkYTMyZjc1
IiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdl
bnRfcm9sZSI6ICJWaXN1YWwgUXVhbGl0eSBJbnNwZWN0b3IiLCAiYWdlbnRfa2V5IjogIjc2MjNm
YzRmN2Q5NGNmM2ZkYmZjYzI5ZmIwYjAyMmJiIiwgInRvb2xzX25hbWVzIjogW119XXoCGAGFAQAB
AAASjgIKECo77ESam8oLrZMmgLLaoksSCLE6x14/Kb1vKgxUYXNrIENyZWF0ZWQwATlI/chAz3Aw
GEEAgMpAz3AwGEouCghjcmV3X2tleRIiCiA5MDczMTE1ODM1ZTFjYWYyYTZlMTUyMmQwNWEwYjUx
ZEoxCgdjcmV3X2lkEiYKJDM3YzhjODc4LTdjZmQtNGIxMi1hOGM3LWMyMmQ2ZTkyMTgwZEouCgh0
YXNrX2tleRIiCiAwMTEzYTllODQ3YzY2MjZkNjRkNmRjOTgzYjA0MDkxOEoxCgd0YXNrX2lkEiYK
JGVkM2JmNWFlLWUwYzEtNDIyMS1hYWE4LTE4ZTY1ZGEzMmY3NXoCGAGFAQABAAA=
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate, zstd
Connection:
- keep-alive
Content-Length:
- '1301'
Content-Type:
- application/x-protobuf
User-Agent:
- OTel-OTLP-Exporter-Python/1.31.1
method: POST
uri: https://telemetry.crewai.com:4319/v1/traces
response:
body:
string: "\n\0"
headers:
Content-Length:
- '2'
Content-Type:
- application/x-protobuf
Date:
- Wed, 26 Mar 2025 19:24:52 GMT
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Visual Quality Inspector.
Senior quality control expert with expertise in visual inspection\nYour personal
goal is: Perform detailed quality analysis of product images\nYou ONLY have
access to the following tools, and should NEVER make up tools that are not listed
here:\n\nTool Name: Add image to content\nTool Arguments: {''image_url'': {''description'':
''The URL or path of the image to add'', ''type'': ''str''}, ''action'': {''description'':
''Optional context or question about the image'', ''type'': ''Union[str, NoneType]''}}\nTool
Description: See image to understand its content, you can optionally ask a question
about the image\n\nIMPORTANT: Use the following format in your response:\n\n```\nThought:
you should always think about what to do\nAction: the action to take, only one
name of [Add image to content], just the name, exactly as it''s written.\nAction
Input: the input to the action, just a simple JSON object, enclosed in curly
braces, using \" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce
all necessary information is gathered, return the following format:\n\n```\nThought:
I now know the final answer\nFinal Answer: the final answer to the original
input question\n```"}, {"role": "user", "content": "\nCurrent Task: \n Analyze
the product image at https://www.us.maguireshoes.com/cdn/shop/files/FW24-Edito-Lucena-Distressed-01_1920x.jpg?v=1736371244
with focus on:\n 1. Quality of materials\n 2. Manufacturing defects\n 3.
Compliance with standards\n Provide a detailed report highlighting any
issues found.\n \n\nThis is the expected criteria for your final answer:
A detailed report highlighting any issues found\nyou MUST return the actual
complete content as the final answer, not a summary.\n\nBegin! This is VERY
important to you, use the tools available and give your best Final Answer, your
job depends on it!\n\nThought:"}], "model": "gpt-4o", "stop": ["\nObservation:"],
"temperature": 0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '2033'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.68.2
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.68.2
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-BFQepLwSYYzdKLylSFsgcJeg6GTqS\",\n \"object\":
\"chat.completion\",\n \"created\": 1743017091,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Thought: I need to examine the product
image to assess the quality of materials, look for any manufacturing defects,
and check compliance with standards.\\n\\nAction: Add image to content\\nAction
Input: {\\\"image_url\\\": \\\"https://www.us.maguireshoes.com/cdn/shop/files/FW24-Edito-Lucena-Distressed-01_1920x.jpg?v=1736371244\\\",
\\\"action\\\": \\\"Analyze the quality of materials, manufacturing defects,
and compliance with standards.\\\"}\",\n \"refusal\": null,\n \"annotations\":
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 413,\n \"completion_tokens\":
101,\n \"total_tokens\": 514,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_7e8d90e604\"\n}\n"
headers:
CF-RAY:
- 926907d79dcff1e7-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 26 Mar 2025 19:24:53 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=WK433.4kW8cr9rwvOlk4EZ2SfRYK9lAPwXCBYEvLcmU-1743017093-1.0.1.1-kVZyUew5rUbMk.2koGJF_rmX.fTseqN241n2M40n8KvBGoKgy6KM6xBmvFbIVWxUs2Y5ZAz8mWy9CrGjaNKSfCzxmv4.pq78z_DGHr37PgI;
path=/; expires=Wed, 26-Mar-25 19:54:53 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=T77PMcuNYeyzK0tQyDOe7EScjVBVzW_7DpD3YQBqmUc-1743017093675-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '1729'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '50000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '49999'
x-ratelimit-remaining-tokens:
- '149999534'
x-ratelimit-reset-requests:
- 1ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_2399c3355adf16734907c73611a7d330
http_version: HTTP/1.1
status_code: 200
- request:
body: !!binary |
CtgBCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkSrwEKEgoQY3Jld2FpLnRl
bGVtZXRyeRKYAQoQp2ACB2xRGve4HGtU2RdWCBIIlQcsbhK22ykqClRvb2wgVXNhZ2UwATlACEXG
z3AwGEHAjGPGz3AwGEobCg5jcmV3YWlfdmVyc2lvbhIJCgcwLjEwOC4wSiMKCXRvb2xfbmFtZRIW
ChRBZGQgaW1hZ2UgdG8gY29udGVudEoOCghhdHRlbXB0cxICGAF6AhgBhQEAAQAA
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate, zstd
Connection:
- keep-alive
Content-Length:
- '219'
Content-Type:
- application/x-protobuf
User-Agent:
- OTel-OTLP-Exporter-Python/1.31.1
method: POST
uri: https://telemetry.crewai.com:4319/v1/traces
response:
body:
string: "\n\0"
headers:
Content-Length:
- '2'
Content-Type:
- application/x-protobuf
Date:
- Wed, 26 Mar 2025 19:24:57 GMT
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Visual Quality Inspector.
Senior quality control expert with expertise in visual inspection\nYour personal
goal is: Perform detailed quality analysis of product images\nYou ONLY have
access to the following tools, and should NEVER make up tools that are not listed
here:\n\nTool Name: Add image to content\nTool Arguments: {''image_url'': {''description'':
''The URL or path of the image to add'', ''type'': ''str''}, ''action'': {''description'':
''Optional context or question about the image'', ''type'': ''Union[str, NoneType]''}}\nTool
Description: See image to understand its content, you can optionally ask a question
about the image\n\nIMPORTANT: Use the following format in your response:\n\n```\nThought:
you should always think about what to do\nAction: the action to take, only one
name of [Add image to content], just the name, exactly as it''s written.\nAction
Input: the input to the action, just a simple JSON object, enclosed in curly
braces, using \" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce
all necessary information is gathered, return the following format:\n\n```\nThought:
I now know the final answer\nFinal Answer: the final answer to the original
input question\n```"}, {"role": "user", "content": "\nCurrent Task: \n Analyze
the product image at https://www.us.maguireshoes.com/cdn/shop/files/FW24-Edito-Lucena-Distressed-01_1920x.jpg?v=1736371244
with focus on:\n 1. Quality of materials\n 2. Manufacturing defects\n 3.
Compliance with standards\n Provide a detailed report highlighting any
issues found.\n \n\nThis is the expected criteria for your final answer:
A detailed report highlighting any issues found\nyou MUST return the actual
complete content as the final answer, not a summary.\n\nBegin! This is VERY
important to you, use the tools available and give your best Final Answer, your
job depends on it!\n\nThought:"}, {"role": "user", "content": [{"type": "text",
"text": "Analyze the quality of materials, manufacturing defects, and compliance
with standards."}, {"type": "image_url", "image_url": {"url": "https://www.us.maguireshoes.com/cdn/shop/files/FW24-Edito-Lucena-Distressed-01_1920x.jpg?v=1736371244"}}]},
{"role": "assistant", "content": "Thought: I need to examine the product image
to assess the quality of materials, look for any manufacturing defects, and
check compliance with standards.\n\nAction: Add image to content\nAction Input:
{\"image_url\": \"https://www.us.maguireshoes.com/cdn/shop/files/FW24-Edito-Lucena-Distressed-01_1920x.jpg?v=1736371244\",
\"action\": \"Analyze the quality of materials, manufacturing defects, and compliance
with standards.\"}"}], "model": "gpt-4o", "stop": ["\nObservation:"], "temperature":
0.7}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '2797'
content-type:
- application/json
cookie:
- __cf_bm=WK433.4kW8cr9rwvOlk4EZ2SfRYK9lAPwXCBYEvLcmU-1743017093-1.0.1.1-kVZyUew5rUbMk.2koGJF_rmX.fTseqN241n2M40n8KvBGoKgy6KM6xBmvFbIVWxUs2Y5ZAz8mWy9CrGjaNKSfCzxmv4.pq78z_DGHr37PgI;
_cfuvid=T77PMcuNYeyzK0tQyDOe7EScjVBVzW_7DpD3YQBqmUc-1743017093675-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.68.2
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.68.2
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-BFQetNNvmPgPxhzaKiHYsPqm8aN0i\",\n \"object\":
\"chat.completion\",\n \"created\": 1743017095,\n \"model\": \"gpt-4o-2024-08-06\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Observation: The image displays a black
leather boot with a pointed toe and a low heel. \\n\\nQuality of Materials:\\n1.
The leather appears to be of good quality, displaying a consistent texture and
finish, which suggests durability.\\n2. The material has a slight sheen, indicating
a possible finishing treatment that enhances the appearance and may offer some
protection.\\n\\nManufacturing Defects:\\n1. There are no visible stitching
errors; the seams appear straight and clean.\\n2. No apparent glue marks or
uneven edges, which indicates good craftsmanship.\\n3. There is a slight distressed
effect, but it appears intentional as part of the design rather than a defect.\\n\\nCompliance
with Standards:\\n1. The shoe design seems to comply with typical fashion standards,
showing a balance of aesthetics and functionality.\\n2. The heel height and
shape appear to provide stability, aligning with safety standards for footwear.\\n\\nFinal
Answer: The analysis of the product image reveals that the black leather boot
is made of high-quality materials with no visible manufacturing defects. The
craftsmanship is precise, with clean seams and a well-executed design. The distressed
effect appears intentional and part of the aesthetic. The boot seems to comply
with fashion and safety standards, offering both style and functionality. No
significant issues were found.\",\n \"refusal\": null,\n \"annotations\":
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 1300,\n \"completion_tokens\":
250,\n \"total_tokens\": 1550,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_3a5b33c01a\"\n}\n"
headers:
CF-RAY:
- 926907e45f33f1e7-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 26 Mar 2025 19:25:01 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '7242'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-input-images:
- '250000'
x-ratelimit-limit-requests:
- '50000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-input-images:
- '249999'
x-ratelimit-remaining-requests:
- '49999'
x-ratelimit-remaining-tokens:
- '149998641'
x-ratelimit-reset-input-images:
- 0s
x-ratelimit-reset-requests:
- 1ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_c5dd144c8ac1bb3bd96ffbba40707b2d
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -11,7 +11,9 @@ import pydantic_core
import pytest
from crewai.agent import Agent
from crewai.agents import CacheHandler
from crewai.agents.cache import CacheHandler
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.crew import Crew
from crewai.crews.crew_output import CrewOutput
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
@@ -3731,6 +3733,44 @@ def test_multimodal_agent_image_tool_handling():
assert result["content"][1]["type"] == "image_url"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_multimodal_agent_describing_image_successfully():
"""
Test that a multimodal agent can process images without validation errors.
This test reproduces the scenario from issue #2475.
"""
llm = LLM(model="openai/gpt-4o", temperature=0.7) # model with vision capabilities
expert_analyst = Agent(
role="Visual Quality Inspector",
goal="Perform detailed quality analysis of product images",
backstory="Senior quality control expert with expertise in visual inspection",
llm=llm,
verbose=True,
allow_delegation=False,
multimodal=True,
)
inspection_task = Task(
description="""
Analyze the product image at https://www.us.maguireshoes.com/cdn/shop/files/FW24-Edito-Lucena-Distressed-01_1920x.jpg?v=1736371244 with focus on:
1. Quality of materials
2. Manufacturing defects
3. Compliance with standards
Provide a detailed report highlighting any issues found.
""",
expected_output="A detailed report highlighting any issues found",
agent=expert_analyst,
)
crew = Crew(agents=[expert_analyst], tasks=[inspection_task])
result = crew.kickoff()
task_output = result.tasks_output[0]
assert isinstance(task_output, TaskOutput)
assert task_output.raw == result.raw
@pytest.mark.vcr(filter_headers=["authorization"])
def test_multimodal_agent_live_image_analysis():
"""
@@ -4025,3 +4065,52 @@ def test_crew_with_knowledge_sources_works_with_copy():
assert len(crew_copy.tasks) == len(crew.tasks)
assert len(crew_copy.tasks) == len(crew.tasks)
def test_crew_kickoff_for_each_works_with_manager_agent_copy():
researcher = Agent(
role="Researcher",
goal="Conduct thorough research and analysis on AI and AI agents",
backstory="You're an expert researcher, specialized in technology, software engineering, AI, and startups. You work as a freelancer and are currently researching for a new client.",
allow_delegation=False
)
writer = Agent(
role="Senior Writer",
goal="Create compelling content about AI and AI agents",
backstory="You're a senior writer, specialized in technology, software engineering, AI, and startups. You work as a freelancer and are currently writing content for a new client.",
allow_delegation=False
)
# Define task
task = Task(
description="Generate a list of 5 interesting ideas for an article, then write one captivating paragraph for each idea that showcases the potential of a full article on this topic. Return the list of ideas with their paragraphs and your notes.",
expected_output="5 bullet points, each with a paragraph and accompanying notes.",
)
# Define manager agent
manager = Agent(
role="Project Manager",
goal="Efficiently manage the crew and ensure high-quality task completion",
backstory="You're an experienced project manager, skilled in overseeing complex projects and guiding teams to success. Your role is to coordinate the efforts of the crew members, ensuring that each task is completed on time and to the highest standard.",
allow_delegation=True
)
# Instantiate crew with a custom manager
crew = Crew(
agents=[researcher, writer],
tasks=[task],
manager_agent=manager,
process=Process.hierarchical,
verbose=True
)
crew_copy = crew.copy()
assert crew_copy.manager_agent is not None
assert crew_copy.manager_agent.id != crew.manager_agent.id
assert crew_copy.manager_agent.role == crew.manager_agent.role
assert crew_copy.manager_agent.goal == crew.manager_agent.goal
assert crew_copy.manager_agent.backstory == crew.manager_agent.backstory
assert isinstance(crew_copy.manager_agent.agent_executor, CrewAgentExecutor)
assert isinstance(crew_copy.manager_agent.cache_handler, CacheHandler)

View File

@@ -0,0 +1,68 @@
from unittest.mock import MagicMock, patch
import pytest
from mem0.memory.main import Memory
from crewai.memory.user.user_memory import UserMemory
from crewai.memory.user.user_memory_item import UserMemoryItem
class MockCrew:
def __init__(self, memory_config):
self.memory_config = memory_config
@pytest.fixture
def user_memory():
"""Fixture to create a UserMemory instance"""
crew = MockCrew(
memory_config={
"provider": "mem0",
"config": {"user_id": "john"},
"user_memory" : {}
}
)
user_memory = MagicMock(spec=UserMemory)
with patch.object(Memory,'__new__',return_value=user_memory):
user_memory_instance = UserMemory(crew=crew)
return user_memory_instance
def test_save_and_search(user_memory):
memory = UserMemoryItem(
data="""test value test value test value test value test value test value
test value test value test value test value test value test value
test value test value test value test value test value test value""",
user="test_user",
metadata={"task": "test_task"},
)
with patch.object(UserMemory, "save") as mock_save:
user_memory.save(
value=memory.data,
metadata=memory.metadata,
user=memory.user
)
mock_save.assert_called_once_with(
value=memory.data,
metadata=memory.metadata,
user=memory.user
)
expected_result = [
{
"context": memory.data,
"metadata": {"agent": "test_agent"},
"score": 0.95,
}
]
expected_result = ["mocked_result"]
# Use patch.object to mock UserMemory's search method
with patch.object(UserMemory, 'search', return_value=expected_result) as mock_search:
find = UserMemory.search("test value", score_threshold=0.01)[0]
mock_search.assert_called_once_with("test value", score_threshold=0.01)
assert find == expected_result[0]

View File

@@ -0,0 +1,114 @@
import os
from unittest.mock import MagicMock, patch
import pytest
from mem0.client.main import MemoryClient
from mem0.memory.main import Memory
from crewai.agent import Agent
from crewai.crew import Crew
from crewai.memory.storage.mem0_storage import Mem0Storage
from crewai.task import Task
# Define the class (if not already defined)
class MockCrew:
def __init__(self, memory_config):
self.memory_config = memory_config
@pytest.fixture
def mock_mem0_memory():
"""Fixture to create a mock Memory instance"""
mock_memory = MagicMock(spec=Memory)
return mock_memory
@pytest.fixture
def mem0_storage_with_mocked_config(mock_mem0_memory):
"""Fixture to create a Mem0Storage instance with mocked dependencies"""
# Patch the Memory class to return our mock
with patch('mem0.memory.main.Memory.from_config', return_value=mock_mem0_memory):
config = {
"vector_store": {
"provider": "mock_vector_store",
"config": {
"host": "localhost",
"port": 6333
}
},
"llm": {
"provider": "mock_llm",
"config": {
"api_key": "mock-api-key",
"model": "mock-model"
}
},
"embedder": {
"provider": "mock_embedder",
"config": {
"api_key": "mock-api-key",
"model": "mock-model"
}
},
"graph_store": {
"provider": "mock_graph_store",
"config": {
"url": "mock-url",
"username": "mock-user",
"password": "mock-password"
}
},
"history_db_path": "/mock/path",
"version": "test-version",
"custom_fact_extraction_prompt": "mock prompt 1",
"custom_update_memory_prompt": "mock prompt 2"
}
# Instantiate the class with memory_config
crew = MockCrew(
memory_config={
"provider": "mem0",
"config": {"user_id": "test_user", "local_mem0_config": config},
}
)
mem0_storage = Mem0Storage(type="short_term", crew=crew)
return mem0_storage
def test_mem0_storage_initialization(mem0_storage_with_mocked_config, mock_mem0_memory):
"""Test that Mem0Storage initializes correctly with the mocked config"""
assert mem0_storage_with_mocked_config.memory_type == "short_term"
assert mem0_storage_with_mocked_config.memory is mock_mem0_memory
@pytest.fixture
def mock_mem0_memory_client():
"""Fixture to create a mock MemoryClient instance"""
mock_memory = MagicMock(spec=MemoryClient)
return mock_memory
@pytest.fixture
def mem0_storage_with_memory_client(mock_mem0_memory_client):
"""Fixture to create a Mem0Storage instance with mocked dependencies"""
# We need to patch the MemoryClient before it's instantiated
with patch.object(MemoryClient, '__new__', return_value=mock_mem0_memory_client):
crew = MockCrew(
memory_config={
"provider": "mem0",
"config": {"user_id": "test_user", "api_key": "ABCDEFGH", "org_id": "my_org_id", "project_id": "my_project_id"},
}
)
mem0_storage = Mem0Storage(type="short_term", crew=crew)
return mem0_storage
def test_mem0_storage_with_memory_client_initialization(mem0_storage_with_memory_client, mock_mem0_memory_client):
"""Test Mem0Storage initialization with MemoryClient"""
assert mem0_storage_with_memory_client.memory_type == "short_term"
assert mem0_storage_with_memory_client.memory is mock_mem0_memory_client

View File

@@ -787,6 +787,25 @@ def test_conditional_task_definition_based_on_dict():
assert task.agent is None
def test_conditional_task_copy_preserves_type():
task_config = {
"description": "Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work', check examples to based your evaluation.",
"expected_output": "The score of the title.",
}
original_task = Task(**task_config)
copied_task = original_task.copy(agents=[], task_mapping={})
assert isinstance(copied_task, Task)
original_conditional_config = {
"description": "Give me an integer score between 1-5 for the following title: 'The impact of AI in the future of work'. Check examples to base your evaluation on.",
"expected_output": "The score of the title.",
"condition": lambda x: True,
}
original_conditional_task = ConditionalTask(**original_conditional_config)
copied_conditional_task = original_conditional_task.copy(agents=[], task_mapping={})
assert isinstance(copied_conditional_task, ConditionalTask)
def test_interpolate_inputs():
task = Task(
description="Give me a list of 5 interesting ideas about {topic} to explore for an article, what makes them unique and interesting.",

View File

@@ -0,0 +1,46 @@
import os
import pytest
from crewai import LLM, Agent, Crew, Task
@pytest.mark.skip(reason="Only run manually with valid API keys")
def test_multimodal_agent_with_image_url():
"""
Test that a multimodal agent can process images without validation errors.
This test reproduces the scenario from issue #2475.
"""
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
if not OPENAI_API_KEY:
pytest.skip("OPENAI_API_KEY environment variable not set")
llm = LLM(
model="openai/gpt-4o", # model with vision capabilities
api_key=OPENAI_API_KEY,
temperature=0.7
)
expert_analyst = Agent(
role="Visual Quality Inspector",
goal="Perform detailed quality analysis of product images",
backstory="Senior quality control expert with expertise in visual inspection",
llm=llm,
verbose=True,
allow_delegation=False,
multimodal=True
)
inspection_task = Task(
description="""
Analyze the product image at https://www.us.maguireshoes.com/collections/spring-25/products/lucena-black-boot with focus on:
1. Quality of materials
2. Manufacturing defects
3. Compliance with standards
Provide a detailed report highlighting any issues found.
""",
expected_output="A detailed report highlighting any issues found",
agent=expert_analyst
)
crew = Crew(agents=[expert_analyst], tasks=[inspection_task])

View File

@@ -1,5 +1,7 @@
import datetime
import json
import random
import time
from unittest.mock import MagicMock, patch
import pytest
@@ -11,6 +13,7 @@ from crewai.tools.tool_usage import ToolUsage
from crewai.utilities.events import crewai_event_bus
from crewai.utilities.events.tool_usage_events import (
ToolSelectionErrorEvent,
ToolUsageFinishedEvent,
ToolValidateInputErrorEvent,
)
@@ -624,3 +627,161 @@ def test_tool_validate_input_error_event():
assert event.agent_role == "test_role"
assert event.tool_name == "test_tool"
assert "must be a valid dictionary" in event.error
def test_tool_usage_finished_event_with_result():
"""Test that ToolUsageFinishedEvent is emitted with correct result attributes."""
# Create mock agent with proper string values
mock_agent = MagicMock()
mock_agent.key = "test_agent_key"
mock_agent.role = "test_agent_role"
mock_agent._original_role = "test_agent_role"
mock_agent.i18n = MagicMock()
mock_agent.verbose = False
# Create mock task
mock_task = MagicMock()
mock_task.delegations = 0
# Create mock tool
class TestTool(BaseTool):
name: str = "Test Tool"
description: str = "A test tool"
def _run(self, input: dict) -> str:
return "test result"
test_tool = TestTool()
# Create mock tool calling
mock_tool_calling = MagicMock()
mock_tool_calling.arguments = {"arg1": "value1"}
# Create ToolUsage instance
tool_usage = ToolUsage(
tools_handler=MagicMock(),
tools=[test_tool],
original_tools=[test_tool],
tools_description="Test Tool Description",
tools_names="Test Tool",
task=mock_task,
function_calling_llm=None,
agent=mock_agent,
action=MagicMock(),
)
# Track received events
received_events = []
@crewai_event_bus.on(ToolUsageFinishedEvent)
def event_handler(source, event):
received_events.append(event)
# Call on_tool_use_finished with test data
started_at = time.time()
result = "test output result"
tool_usage.on_tool_use_finished(
tool=test_tool,
tool_calling=mock_tool_calling,
from_cache=False,
started_at=started_at,
result=result,
)
# Verify event was emitted
assert len(received_events) == 1, "Expected one event to be emitted"
event = received_events[0]
assert isinstance(event, ToolUsageFinishedEvent)
# Verify event attributes
assert event.agent_key == "test_agent_key"
assert event.agent_role == "test_agent_role"
assert event.tool_name == "Test Tool"
assert event.tool_args == {"arg1": "value1"}
assert event.tool_class == "TestTool"
assert event.run_attempts == 1 # Default value from ToolUsage
assert event.delegations == 0
assert event.from_cache is False
assert event.output == "test output result"
assert isinstance(event.started_at, datetime.datetime)
assert isinstance(event.finished_at, datetime.datetime)
assert event.type == "tool_usage_finished"
def test_tool_usage_finished_event_with_cached_result():
"""Test that ToolUsageFinishedEvent is emitted with correct result attributes when using cached result."""
# Create mock agent with proper string values
mock_agent = MagicMock()
mock_agent.key = "test_agent_key"
mock_agent.role = "test_agent_role"
mock_agent._original_role = "test_agent_role"
mock_agent.i18n = MagicMock()
mock_agent.verbose = False
# Create mock task
mock_task = MagicMock()
mock_task.delegations = 0
# Create mock tool
class TestTool(BaseTool):
name: str = "Test Tool"
description: str = "A test tool"
def _run(self, input: dict) -> str:
return "test result"
test_tool = TestTool()
# Create mock tool calling
mock_tool_calling = MagicMock()
mock_tool_calling.arguments = {"arg1": "value1"}
# Create ToolUsage instance
tool_usage = ToolUsage(
tools_handler=MagicMock(),
tools=[test_tool],
original_tools=[test_tool],
tools_description="Test Tool Description",
tools_names="Test Tool",
task=mock_task,
function_calling_llm=None,
agent=mock_agent,
action=MagicMock(),
)
# Track received events
received_events = []
@crewai_event_bus.on(ToolUsageFinishedEvent)
def event_handler(source, event):
received_events.append(event)
# Call on_tool_use_finished with test data and from_cache=True
started_at = time.time()
result = "cached test output result"
tool_usage.on_tool_use_finished(
tool=test_tool,
tool_calling=mock_tool_calling,
from_cache=True,
started_at=started_at,
result=result,
)
# Verify event was emitted
assert len(received_events) == 1, "Expected one event to be emitted"
event = received_events[0]
assert isinstance(event, ToolUsageFinishedEvent)
# Verify event attributes
assert event.agent_key == "test_agent_key"
assert event.agent_role == "test_agent_role"
assert event.tool_name == "Test Tool"
assert event.tool_args == {"arg1": "value1"}
assert event.tool_class == "TestTool"
assert event.run_attempts == 1 # Default value from ToolUsage
assert event.delegations == 0
assert event.from_cache is True
assert event.output == "cached test output result"
assert isinstance(event.started_at, datetime.datetime)
assert isinstance(event.finished_at, datetime.datetime)
assert event.type == "tool_usage_finished"

View File

@@ -1,10 +1,10 @@
from unittest.mock import Mock
from crewai.utilities.events.base_events import CrewEvent
from crewai.utilities.events.base_events import BaseEvent
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
class TestEvent(CrewEvent):
class TestEvent(BaseEvent):
pass
@@ -24,7 +24,7 @@ def test_specific_event_handler():
def test_wildcard_event_handler():
mock_handler = Mock()
@crewai_event_bus.on(CrewEvent)
@crewai_event_bus.on(BaseEvent)
def handler(source, event):
mock_handler(source, event)

View File

@@ -0,0 +1,81 @@
import unittest
from typing import Any, Dict, List, Union
import pytest
from crewai.utilities.chromadb import (
MAX_COLLECTION_LENGTH,
MIN_COLLECTION_LENGTH,
is_ipv4_pattern,
sanitize_collection_name,
)
class TestChromadbUtils(unittest.TestCase):
def test_sanitize_collection_name_long_name(self):
"""Test sanitizing a very long collection name."""
long_name = "This is an extremely long role name that will definitely exceed the ChromaDB collection name limit of 63 characters and cause an error when used as a collection name"
sanitized = sanitize_collection_name(long_name)
self.assertLessEqual(len(sanitized), MAX_COLLECTION_LENGTH)
self.assertTrue(sanitized[0].isalnum())
self.assertTrue(sanitized[-1].isalnum())
self.assertTrue(all(c.isalnum() or c in ["_", "-"] for c in sanitized))
def test_sanitize_collection_name_special_chars(self):
"""Test sanitizing a name with special characters."""
special_chars = "Agent@123!#$%^&*()"
sanitized = sanitize_collection_name(special_chars)
self.assertTrue(sanitized[0].isalnum())
self.assertTrue(sanitized[-1].isalnum())
self.assertTrue(all(c.isalnum() or c in ["_", "-"] for c in sanitized))
def test_sanitize_collection_name_short_name(self):
"""Test sanitizing a very short name."""
short_name = "A"
sanitized = sanitize_collection_name(short_name)
self.assertGreaterEqual(len(sanitized), MIN_COLLECTION_LENGTH)
self.assertTrue(sanitized[0].isalnum())
self.assertTrue(sanitized[-1].isalnum())
def test_sanitize_collection_name_bad_ends(self):
"""Test sanitizing a name with non-alphanumeric start/end."""
bad_ends = "_Agent_"
sanitized = sanitize_collection_name(bad_ends)
self.assertTrue(sanitized[0].isalnum())
self.assertTrue(sanitized[-1].isalnum())
def test_sanitize_collection_name_none(self):
"""Test sanitizing a None value."""
sanitized = sanitize_collection_name(None)
self.assertEqual(sanitized, "default_collection")
def test_sanitize_collection_name_ipv4_pattern(self):
"""Test sanitizing an IPv4 address."""
ipv4 = "192.168.1.1"
sanitized = sanitize_collection_name(ipv4)
self.assertTrue(sanitized.startswith("ip_"))
self.assertTrue(sanitized[0].isalnum())
self.assertTrue(sanitized[-1].isalnum())
self.assertTrue(all(c.isalnum() or c in ["_", "-"] for c in sanitized))
def test_is_ipv4_pattern(self):
"""Test IPv4 pattern detection."""
self.assertTrue(is_ipv4_pattern("192.168.1.1"))
self.assertFalse(is_ipv4_pattern("not.an.ip.address"))
def test_sanitize_collection_name_properties(self):
"""Test that sanitized collection names always meet ChromaDB requirements."""
test_cases = [
"A" * 100, # Very long name
"_start_with_underscore",
"end_with_underscore_",
"contains@special#characters",
"192.168.1.1", # IPv4 address
"a" * 2, # Too short
]
for test_case in test_cases:
sanitized = sanitize_collection_name(test_case)
self.assertGreaterEqual(len(sanitized), MIN_COLLECTION_LENGTH)
self.assertLessEqual(len(sanitized), MAX_COLLECTION_LENGTH)
self.assertTrue(sanitized[0].isalnum())
self.assertTrue(sanitized[-1].isalnum())

View File

@@ -5,8 +5,7 @@ from unittest.mock import Mock
import pytest
from pydantic import BaseModel
from crewai.flow import Flow
from crewai.flow.state_utils import export_state, to_string
from crewai.utilities.serialization import to_serializable, to_string
class Address(BaseModel):
@@ -23,16 +22,6 @@ class Person(BaseModel):
skills: List[str]
@pytest.fixture
def mock_flow():
def create_flow(state):
flow = Mock(spec=Flow)
flow._state = state
return flow
return create_flow
@pytest.mark.parametrize(
"test_input,expected",
[
@@ -47,9 +36,8 @@ def mock_flow():
({"nested": [1, [2, 3], {4, 5}]}, {"nested": [1, [2, 3], [4, 5]]}),
],
)
def test_basic_serialization(mock_flow, test_input, expected):
flow = mock_flow(test_input)
result = export_state(flow)
def test_basic_serialization(test_input, expected):
result = to_serializable(test_input)
assert result == expected
@@ -60,9 +48,8 @@ def test_basic_serialization(mock_flow, test_input, expected):
(datetime(2024, 1, 1, 12, 30), "2024-01-01T12:30:00"),
],
)
def test_temporal_serialization(mock_flow, input_date, expected):
flow = mock_flow({"date": input_date})
result = export_state(flow)
def test_temporal_serialization(input_date, expected):
result = to_serializable({"date": input_date})
assert result["date"] == expected
@@ -75,9 +62,8 @@ def test_temporal_serialization(mock_flow, input_date, expected):
("normal", "value", str),
],
)
def test_dictionary_key_serialization(mock_flow, key, value, expected_key_type):
flow = mock_flow({key: value})
result = export_state(flow)
def test_dictionary_key_serialization(key, value, expected_key_type):
result = to_serializable({key: value})
assert len(result) == 1
result_key = next(iter(result.keys()))
assert isinstance(result_key, expected_key_type)
@@ -91,14 +77,13 @@ def test_dictionary_key_serialization(mock_flow, key, value, expected_key_type):
(str.upper, "upper"),
],
)
def test_callable_serialization(mock_flow, callable_obj, expected_in_result):
flow = mock_flow({"func": callable_obj})
result = export_state(flow)
def test_callable_serialization(callable_obj, expected_in_result):
result = to_serializable({"func": callable_obj})
assert isinstance(result["func"], str)
assert expected_in_result in result["func"].lower()
def test_pydantic_model_serialization(mock_flow):
def test_pydantic_model_serialization():
address = Address(street="123 Main St", city="Tech City", country="Pythonia")
person = Person(
@@ -109,23 +94,21 @@ def test_pydantic_model_serialization(mock_flow):
skills=["Python", "Testing"],
)
flow = mock_flow(
{
"single_model": address,
"nested_model": person,
"model_list": [address, address],
"model_dict": {"home": address},
}
)
data = {
"single_model": address,
"nested_model": person,
"model_list": [address, address],
"model_dict": {"home": address},
}
result = export_state(flow)
result = to_serializable(data)
assert (
to_string(result)
== '{"single_model": {"street": "123 Main St", "city": "Tech City", "country": "Pythonia"}, "nested_model": {"name": "John Doe", "age": 30, "address": {"street": "123 Main St", "city": "Tech City", "country": "Pythonia"}, "birthday": "1994-01-01", "skills": ["Python", "Testing"]}, "model_list": [{"street": "123 Main St", "city": "Tech City", "country": "Pythonia"}, {"street": "123 Main St", "city": "Tech City", "country": "Pythonia"}], "model_dict": {"home": {"street": "123 Main St", "city": "Tech City", "country": "Pythonia"}}}'
)
def test_depth_limit(mock_flow):
def test_depth_limit():
"""Test max depth handling with a deeply nested structure"""
def create_nested(depth):
@@ -134,8 +117,7 @@ def test_depth_limit(mock_flow):
return {"next": create_nested(depth - 1)}
deep_structure = create_nested(10)
flow = mock_flow(deep_structure)
result = export_state(flow)
result = to_serializable(deep_structure)
assert result == {
"next": {
@@ -148,3 +130,23 @@ def test_depth_limit(mock_flow):
}
}
}
def test_exclude_keys():
result = to_serializable({"key1": "value1", "key2": "value2"}, exclude={"key1"})
assert result == {"key2": "value2"}
model = Person(
name="John Doe",
age=30,
address=Address(street="123 Main St", city="Tech City", country="Pythonia"),
birthday=date(1994, 1, 1),
skills=["Python", "Testing"],
)
result = to_serializable(model, exclude={"address"})
assert result == {
"name": "John Doe",
"age": 30,
"birthday": "1994-01-01",
"skills": ["Python", "Testing"],
}