mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-09 16:18:30 +00:00
feat: enhance AnthropicCompletion class with additional client parameters and tool handling
- Added support for client_params in the AnthropicCompletion class to allow for additional client configuration. - Refactored client initialization to use a dedicated method for retrieving client parameters. - Implemented a new method to handle tool use conversation flow, ensuring proper execution and response handling. - Introduced comprehensive test cases to validate the functionality of the AnthropicCompletion class, including tool use scenarios and parameter handling.
This commit is contained in:
@@ -40,6 +40,7 @@ class AnthropicCompletion(BaseLLM):
|
||||
top_p: float | None = None,
|
||||
stop_sequences: list[str] | None = None,
|
||||
stream: bool = False,
|
||||
client_params: dict[str, Any] | None = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""Initialize Anthropic chat completion client.
|
||||
@@ -55,19 +56,20 @@ class AnthropicCompletion(BaseLLM):
|
||||
top_p: Nucleus sampling parameter
|
||||
stop_sequences: Stop sequences (Anthropic uses stop_sequences, not stop)
|
||||
stream: Enable streaming responses
|
||||
client_params: Additional parameters for the Anthropic client
|
||||
**kwargs: Additional parameters
|
||||
"""
|
||||
super().__init__(
|
||||
model=model, temperature=temperature, stop=stop_sequences or [], **kwargs
|
||||
)
|
||||
|
||||
# Initialize Anthropic client
|
||||
self.client = Anthropic(
|
||||
api_key=api_key or os.getenv("ANTHROPIC_API_KEY"),
|
||||
base_url=base_url,
|
||||
timeout=timeout,
|
||||
max_retries=max_retries,
|
||||
)
|
||||
# Client params
|
||||
self.client_params = client_params
|
||||
self.base_url = base_url
|
||||
self.timeout = timeout
|
||||
self.max_retries = max_retries
|
||||
|
||||
self.client = Anthropic(**self._get_client_params())
|
||||
|
||||
# Store completion parameters
|
||||
self.max_tokens = max_tokens
|
||||
@@ -79,6 +81,26 @@ class AnthropicCompletion(BaseLLM):
|
||||
self.is_claude_3 = "claude-3" in model.lower()
|
||||
self.supports_tools = self.is_claude_3 # Claude 3+ supports tool use
|
||||
|
||||
def _get_client_params(self) -> dict[str, Any]:
|
||||
"""Get client parameters."""
|
||||
|
||||
if self.api_key is None:
|
||||
self.api_key = os.getenv("ANTHROPIC_API_KEY")
|
||||
if self.api_key is None:
|
||||
raise ValueError("ANTHROPIC_API_KEY is required")
|
||||
|
||||
client_params = {
|
||||
"api_key": self.api_key,
|
||||
"base_url": self.base_url,
|
||||
"timeout": self.timeout,
|
||||
"max_retries": self.max_retries,
|
||||
}
|
||||
|
||||
if self.client_params:
|
||||
client_params.update(self.client_params)
|
||||
|
||||
return client_params
|
||||
|
||||
def call(
|
||||
self,
|
||||
messages: str | list[dict[str, str]],
|
||||
@@ -102,6 +124,7 @@ class AnthropicCompletion(BaseLLM):
|
||||
Chat completion response or tool call result
|
||||
"""
|
||||
try:
|
||||
print("we are calling", messages)
|
||||
# Emit call started event
|
||||
self._emit_call_started_event(
|
||||
messages=messages,
|
||||
@@ -121,6 +144,7 @@ class AnthropicCompletion(BaseLLM):
|
||||
completion_params = self._prepare_completion_params(
|
||||
formatted_messages, system_message, tools
|
||||
)
|
||||
print("completion_params", completion_params)
|
||||
|
||||
# Handle streaming vs non-streaming
|
||||
if self.stream:
|
||||
@@ -183,12 +207,25 @@ class AnthropicCompletion(BaseLLM):
|
||||
|
||||
def _convert_tools_for_interference(self, tools: list[dict]) -> list[dict]:
|
||||
"""Convert CrewAI tool format to Anthropic tool use format."""
|
||||
from crewai.llms.providers.utils.common import safe_tool_conversion
|
||||
|
||||
anthropic_tools = []
|
||||
|
||||
for tool in tools:
|
||||
if "input_schema" in tool and "name" in tool and "description" in tool:
|
||||
anthropic_tools.append(tool)
|
||||
continue
|
||||
|
||||
try:
|
||||
from crewai.llms.providers.utils.common import safe_tool_conversion
|
||||
|
||||
name, description, parameters = safe_tool_conversion(tool, "Anthropic")
|
||||
except (ImportError, Exception):
|
||||
name = tool.get("name", "unknown_tool")
|
||||
description = tool.get("description", "A tool function")
|
||||
parameters = (
|
||||
tool.get("input_schema")
|
||||
or tool.get("parameters")
|
||||
or tool.get("schema")
|
||||
)
|
||||
|
||||
anthropic_tool = {
|
||||
"name": name,
|
||||
@@ -196,7 +233,13 @@ class AnthropicCompletion(BaseLLM):
|
||||
}
|
||||
|
||||
if parameters and isinstance(parameters, dict):
|
||||
anthropic_tool["input_schema"] = parameters # type: ignore
|
||||
anthropic_tool["input_schema"] = parameters
|
||||
else:
|
||||
anthropic_tool["input_schema"] = {
|
||||
"type": "object",
|
||||
"properties": {},
|
||||
"required": [],
|
||||
}
|
||||
|
||||
anthropic_tools.append(anthropic_tool)
|
||||
|
||||
@@ -229,13 +272,11 @@ class AnthropicCompletion(BaseLLM):
|
||||
content = message.get("content", "")
|
||||
|
||||
if role == "system":
|
||||
# Extract system message - Anthropic handles it separately
|
||||
if system_message:
|
||||
system_message += f"\n\n{content}"
|
||||
else:
|
||||
system_message = content
|
||||
else:
|
||||
# Add user/assistant messages - ensure both role and content are str, not None
|
||||
role_str = role if role is not None else "user"
|
||||
content_str = content if content is not None else ""
|
||||
formatted_messages.append({"role": role_str, "content": content_str})
|
||||
@@ -259,6 +300,7 @@ class AnthropicCompletion(BaseLLM):
|
||||
) -> str | Any:
|
||||
"""Handle non-streaming message completion."""
|
||||
try:
|
||||
print("params", params)
|
||||
response: Message = self.client.messages.create(**params)
|
||||
|
||||
except Exception as e:
|
||||
@@ -270,23 +312,23 @@ class AnthropicCompletion(BaseLLM):
|
||||
usage = self._extract_anthropic_token_usage(response)
|
||||
self._track_token_usage_internal(usage)
|
||||
|
||||
# Check if Claude wants to use tools
|
||||
if response.content and available_functions:
|
||||
for content_block in response.content:
|
||||
if isinstance(content_block, ToolUseBlock):
|
||||
function_name = content_block.name
|
||||
function_args = content_block.input
|
||||
tool_uses = [
|
||||
block for block in response.content if isinstance(block, ToolUseBlock)
|
||||
]
|
||||
|
||||
result = self._handle_tool_execution(
|
||||
function_name=function_name,
|
||||
function_args=function_args, # type: ignore
|
||||
available_functions=available_functions,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
if tool_uses:
|
||||
# Handle tool use conversation flow
|
||||
return self._handle_tool_use_conversation(
|
||||
response,
|
||||
tool_uses,
|
||||
params,
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
)
|
||||
|
||||
if result is not None:
|
||||
return result
|
||||
|
||||
# Extract text content
|
||||
content = ""
|
||||
if response.content:
|
||||
@@ -350,26 +392,54 @@ class AnthropicCompletion(BaseLLM):
|
||||
|
||||
# Handle completed tool uses
|
||||
if tool_uses and available_functions:
|
||||
for tool_data in tool_uses.values():
|
||||
function_name = tool_data["name"]
|
||||
|
||||
# Convert streamed tool uses to ToolUseBlock-like objects for consistency
|
||||
tool_use_blocks = []
|
||||
for tool_id, tool_data in tool_uses.items():
|
||||
try:
|
||||
function_args = json.loads(tool_data["input"])
|
||||
except json.JSONDecodeError as e:
|
||||
logging.error(f"Failed to parse streamed tool arguments: {e}")
|
||||
continue
|
||||
|
||||
# Execute tool
|
||||
result = self._handle_tool_execution(
|
||||
function_name=function_name,
|
||||
function_args=function_args,
|
||||
available_functions=available_functions,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
# Create a mock ToolUseBlock-like object
|
||||
class MockToolUse:
|
||||
def __init__(self, tool_id: str, name: str, input_args: dict):
|
||||
self.id = tool_id
|
||||
self.name = name
|
||||
self.input = input_args
|
||||
|
||||
tool_use_blocks.append(
|
||||
MockToolUse(tool_id, tool_data["name"], function_args)
|
||||
)
|
||||
|
||||
if result is not None:
|
||||
return result
|
||||
if tool_use_blocks:
|
||||
# Create a mock response object for the tool conversation flow
|
||||
class MockResponse:
|
||||
def __init__(self, content_blocks):
|
||||
self.content = content_blocks
|
||||
|
||||
# Combine text content and tool uses in the response
|
||||
response_content = []
|
||||
if full_response.strip(): # Add text content if any
|
||||
|
||||
class MockTextBlock:
|
||||
def __init__(self, text: str):
|
||||
self.text = text
|
||||
|
||||
response_content.append(MockTextBlock(full_response))
|
||||
|
||||
response_content.extend(tool_use_blocks)
|
||||
mock_response = MockResponse(response_content)
|
||||
|
||||
# Handle tool use conversation flow
|
||||
return self._handle_tool_use_conversation(
|
||||
mock_response,
|
||||
tool_use_blocks,
|
||||
params,
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
)
|
||||
|
||||
# Apply stop words to full response
|
||||
full_response = self._apply_stop_words(full_response)
|
||||
@@ -385,6 +455,115 @@ class AnthropicCompletion(BaseLLM):
|
||||
|
||||
return full_response
|
||||
|
||||
def _handle_tool_use_conversation(
|
||||
self,
|
||||
initial_response: Message
|
||||
| Any, # Can be Message or mock response from streaming
|
||||
tool_uses: list[ToolUseBlock]
|
||||
| list[Any], # Can be ToolUseBlock or mock objects
|
||||
params: dict[str, Any],
|
||||
available_functions: dict[str, Any],
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
) -> str:
|
||||
"""Handle the complete tool use conversation flow.
|
||||
|
||||
This implements the proper Anthropic tool use pattern:
|
||||
1. Claude requests tool use
|
||||
2. We execute the tools
|
||||
3. We send tool results back to Claude
|
||||
4. Claude processes results and generates final response
|
||||
"""
|
||||
# Execute all requested tools and collect results
|
||||
tool_results = []
|
||||
|
||||
for tool_use in tool_uses:
|
||||
function_name = tool_use.name
|
||||
function_args = tool_use.input
|
||||
|
||||
# Execute the tool
|
||||
result = self._handle_tool_execution(
|
||||
function_name=function_name,
|
||||
function_args=function_args, # type: ignore
|
||||
available_functions=available_functions,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
)
|
||||
|
||||
# Create tool result in Anthropic format
|
||||
tool_result = {
|
||||
"type": "tool_result",
|
||||
"tool_use_id": tool_use.id,
|
||||
"content": str(result)
|
||||
if result is not None
|
||||
else "Tool execution completed",
|
||||
}
|
||||
tool_results.append(tool_result)
|
||||
|
||||
# Prepare follow-up conversation with tool results
|
||||
follow_up_params = params.copy()
|
||||
|
||||
# Add Claude's tool use response to conversation
|
||||
assistant_message = {"role": "assistant", "content": initial_response.content}
|
||||
|
||||
# Add user message with tool results
|
||||
user_message = {"role": "user", "content": tool_results}
|
||||
|
||||
# Update messages for follow-up call
|
||||
follow_up_params["messages"] = params["messages"] + [
|
||||
assistant_message,
|
||||
user_message,
|
||||
]
|
||||
|
||||
try:
|
||||
# Send tool results back to Claude for final response
|
||||
final_response: Message = self.client.messages.create(**follow_up_params)
|
||||
|
||||
# Track token usage for follow-up call
|
||||
follow_up_usage = self._extract_anthropic_token_usage(final_response)
|
||||
self._track_token_usage_internal(follow_up_usage)
|
||||
|
||||
# Extract final text content
|
||||
final_content = ""
|
||||
if final_response.content:
|
||||
for content_block in final_response.content:
|
||||
if hasattr(content_block, "text"):
|
||||
final_content += content_block.text
|
||||
|
||||
final_content = self._apply_stop_words(final_content)
|
||||
|
||||
# Emit completion event for the final response
|
||||
self._emit_call_completed_event(
|
||||
response=final_content,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=follow_up_params["messages"],
|
||||
)
|
||||
|
||||
# Log combined token usage
|
||||
total_usage = {
|
||||
"input_tokens": follow_up_usage.get("input_tokens", 0),
|
||||
"output_tokens": follow_up_usage.get("output_tokens", 0),
|
||||
"total_tokens": follow_up_usage.get("total_tokens", 0),
|
||||
}
|
||||
|
||||
if total_usage.get("total_tokens", 0) > 0:
|
||||
logging.info(f"Anthropic API tool conversation usage: {total_usage}")
|
||||
|
||||
return final_content
|
||||
|
||||
except Exception as e:
|
||||
if is_context_length_exceeded(e):
|
||||
logging.error(f"Context window exceeded in tool follow-up: {e}")
|
||||
raise LLMContextLengthExceededError(str(e)) from e
|
||||
|
||||
logging.error(f"Tool follow-up conversation failed: {e}")
|
||||
# Fallback: return the first tool result if follow-up fails
|
||||
if tool_results:
|
||||
return tool_results[0]["content"]
|
||||
raise e
|
||||
|
||||
def supports_function_calling(self) -> bool:
|
||||
"""Check if the model supports function calling."""
|
||||
return self.supports_tools
|
||||
|
||||
660
lib/crewai/tests/llms/anthropic/test_anthropic.py
Normal file
660
lib/crewai/tests/llms/anthropic/test_anthropic.py
Normal file
@@ -0,0 +1,660 @@
|
||||
import os
|
||||
import sys
|
||||
import types
|
||||
from unittest.mock import patch, MagicMock
|
||||
import pytest
|
||||
|
||||
from crewai.llm import LLM
|
||||
from crewai.llms.providers.anthropic.completion import AnthropicCompletion
|
||||
from crewai.crew import Crew
|
||||
from crewai.agent import Agent
|
||||
from crewai.task import Task
|
||||
from crewai.cli.constants import DEFAULT_LLM_MODEL
|
||||
|
||||
|
||||
def test_anthropic_completion_is_used_when_anthropic_provider():
|
||||
"""
|
||||
Test that AnthropicCompletion from completion.py is used when LLM uses provider 'anthropic'
|
||||
"""
|
||||
llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
|
||||
|
||||
assert llm.__class__.__name__ == "AnthropicCompletion"
|
||||
assert llm.provider == "anthropic"
|
||||
assert llm.model == "claude-3-5-sonnet-20241022"
|
||||
|
||||
|
||||
def test_anthropic_completion_is_used_when_claude_provider():
|
||||
"""
|
||||
Test that AnthropicCompletion is used when provider is 'claude'
|
||||
"""
|
||||
llm = LLM(model="claude/claude-3-5-sonnet-20241022")
|
||||
|
||||
from crewai.llms.providers.anthropic.completion import AnthropicCompletion
|
||||
assert isinstance(llm, AnthropicCompletion)
|
||||
assert llm.provider == "claude"
|
||||
assert llm.model == "claude-3-5-sonnet-20241022"
|
||||
|
||||
|
||||
|
||||
|
||||
def test_anthropic_tool_use_conversation_flow():
|
||||
"""
|
||||
Test that the Anthropic completion properly handles tool use conversation flow
|
||||
"""
|
||||
from unittest.mock import Mock, patch
|
||||
from crewai.llms.providers.anthropic.completion import AnthropicCompletion
|
||||
from anthropic.types.tool_use_block import ToolUseBlock
|
||||
|
||||
# Create AnthropicCompletion instance
|
||||
completion = AnthropicCompletion(model="claude-3-5-sonnet-20241022")
|
||||
|
||||
# Mock tool function
|
||||
def mock_weather_tool(location: str) -> str:
|
||||
return f"The weather in {location} is sunny and 75°F"
|
||||
|
||||
available_functions = {"get_weather": mock_weather_tool}
|
||||
|
||||
# Mock the Anthropic client responses
|
||||
with patch.object(completion.client.messages, 'create') as mock_create:
|
||||
# Mock initial response with tool use - need to properly mock ToolUseBlock
|
||||
mock_tool_use = Mock(spec=ToolUseBlock)
|
||||
mock_tool_use.id = "tool_123"
|
||||
mock_tool_use.name = "get_weather"
|
||||
mock_tool_use.input = {"location": "San Francisco"}
|
||||
|
||||
mock_initial_response = Mock()
|
||||
mock_initial_response.content = [mock_tool_use]
|
||||
mock_initial_response.usage = Mock()
|
||||
mock_initial_response.usage.input_tokens = 100
|
||||
mock_initial_response.usage.output_tokens = 50
|
||||
|
||||
# Mock final response after tool result - properly mock text content
|
||||
mock_text_block = Mock()
|
||||
# Set the text attribute as a string, not another Mock
|
||||
mock_text_block.configure_mock(text="Based on the weather data, it's a beautiful day in San Francisco with sunny skies and 75°F temperature.")
|
||||
|
||||
mock_final_response = Mock()
|
||||
mock_final_response.content = [mock_text_block]
|
||||
mock_final_response.usage = Mock()
|
||||
mock_final_response.usage.input_tokens = 150
|
||||
mock_final_response.usage.output_tokens = 75
|
||||
|
||||
# Configure mock to return different responses on successive calls
|
||||
mock_create.side_effect = [mock_initial_response, mock_final_response]
|
||||
|
||||
# Test the call
|
||||
messages = [{"role": "user", "content": "What's the weather like in San Francisco?"}]
|
||||
result = completion.call(
|
||||
messages=messages,
|
||||
available_functions=available_functions
|
||||
)
|
||||
|
||||
# Verify the result contains the final response
|
||||
assert "beautiful day in San Francisco" in result
|
||||
assert "sunny skies" in result
|
||||
assert "75°F" in result
|
||||
|
||||
# Verify that two API calls were made (initial + follow-up)
|
||||
assert mock_create.call_count == 2
|
||||
|
||||
# Verify the second call includes tool results
|
||||
second_call_args = mock_create.call_args_list[1][1] # kwargs of second call
|
||||
messages_in_second_call = second_call_args["messages"]
|
||||
|
||||
# Should have original user message + assistant tool use + user tool result
|
||||
assert len(messages_in_second_call) == 3
|
||||
assert messages_in_second_call[0]["role"] == "user"
|
||||
assert messages_in_second_call[1]["role"] == "assistant"
|
||||
assert messages_in_second_call[2]["role"] == "user"
|
||||
|
||||
# Verify tool result format
|
||||
tool_result = messages_in_second_call[2]["content"][0]
|
||||
assert tool_result["type"] == "tool_result"
|
||||
assert tool_result["tool_use_id"] == "tool_123"
|
||||
assert "sunny and 75°F" in tool_result["content"]
|
||||
|
||||
|
||||
def test_anthropic_completion_module_is_imported():
|
||||
"""
|
||||
Test that the completion module is properly imported when using Anthropic provider
|
||||
"""
|
||||
module_name = "crewai.llms.providers.anthropic.completion"
|
||||
|
||||
# Remove module from cache if it exists
|
||||
if module_name in sys.modules:
|
||||
del sys.modules[module_name]
|
||||
|
||||
# Create LLM instance - this should trigger the import
|
||||
LLM(model="anthropic/claude-3-5-sonnet-20241022")
|
||||
|
||||
# Verify the module was imported
|
||||
assert module_name in sys.modules
|
||||
completion_mod = sys.modules[module_name]
|
||||
assert isinstance(completion_mod, types.ModuleType)
|
||||
|
||||
# Verify the class exists in the module
|
||||
assert hasattr(completion_mod, 'AnthropicCompletion')
|
||||
|
||||
|
||||
def test_fallback_to_litellm_when_native_anthropic_fails():
|
||||
"""
|
||||
Test that LLM falls back to LiteLLM when native Anthropic completion fails
|
||||
"""
|
||||
# Mock the _get_native_provider to return a failing class
|
||||
with patch('crewai.llm.LLM._get_native_provider') as mock_get_provider:
|
||||
|
||||
class FailingCompletion:
|
||||
def __init__(self, *args, **kwargs):
|
||||
raise Exception("Native Anthropic SDK failed")
|
||||
|
||||
mock_get_provider.return_value = FailingCompletion
|
||||
|
||||
# This should fall back to LiteLLM
|
||||
llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
|
||||
|
||||
# Check that it's using LiteLLM
|
||||
assert hasattr(llm, 'is_litellm')
|
||||
assert llm.is_litellm == True
|
||||
|
||||
|
||||
def test_anthropic_completion_initialization_parameters():
|
||||
"""
|
||||
Test that AnthropicCompletion is initialized with correct parameters
|
||||
"""
|
||||
llm = LLM(
|
||||
model="anthropic/claude-3-5-sonnet-20241022",
|
||||
temperature=0.7,
|
||||
max_tokens=2000,
|
||||
top_p=0.9,
|
||||
api_key="test-key"
|
||||
)
|
||||
|
||||
from crewai.llms.providers.anthropic.completion import AnthropicCompletion
|
||||
assert isinstance(llm, AnthropicCompletion)
|
||||
assert llm.model == "claude-3-5-sonnet-20241022"
|
||||
assert llm.temperature == 0.7
|
||||
assert llm.max_tokens == 2000
|
||||
assert llm.top_p == 0.9
|
||||
|
||||
|
||||
def test_anthropic_specific_parameters():
|
||||
"""
|
||||
Test Anthropic-specific parameters like stop_sequences and streaming
|
||||
"""
|
||||
llm = LLM(
|
||||
model="anthropic/claude-3-5-sonnet-20241022",
|
||||
stop_sequences=["Human:", "Assistant:"],
|
||||
stream=True,
|
||||
max_retries=5,
|
||||
timeout=60
|
||||
)
|
||||
|
||||
from crewai.llms.providers.anthropic.completion import AnthropicCompletion
|
||||
assert isinstance(llm, AnthropicCompletion)
|
||||
assert llm.stop_sequences == ["Human:", "Assistant:"]
|
||||
assert llm.stream == True
|
||||
assert llm.client.max_retries == 5
|
||||
assert llm.client.timeout == 60
|
||||
|
||||
|
||||
def test_anthropic_completion_call():
|
||||
"""
|
||||
Test that AnthropicCompletion call method works
|
||||
"""
|
||||
llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
|
||||
|
||||
# Mock the call method on the instance
|
||||
with patch.object(llm, 'call', return_value="Hello! I'm Claude, ready to help.") as mock_call:
|
||||
result = llm.call("Hello, how are you?")
|
||||
|
||||
assert result == "Hello! I'm Claude, ready to help."
|
||||
mock_call.assert_called_once_with("Hello, how are you?")
|
||||
|
||||
|
||||
def test_anthropic_completion_called_during_crew_execution():
|
||||
"""
|
||||
Test that AnthropicCompletion.call is actually invoked when running a crew
|
||||
"""
|
||||
# Create the LLM instance first
|
||||
anthropic_llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
|
||||
|
||||
# Mock the call method on the specific instance
|
||||
with patch.object(anthropic_llm, 'call', return_value="Tokyo has 14 million people.") as mock_call:
|
||||
|
||||
# Create agent with explicit LLM configuration
|
||||
agent = Agent(
|
||||
role="Research Assistant",
|
||||
goal="Find population info",
|
||||
backstory="You research populations.",
|
||||
llm=anthropic_llm,
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Find Tokyo population",
|
||||
expected_output="Population number",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
crew = Crew(agents=[agent], tasks=[task])
|
||||
result = crew.kickoff()
|
||||
|
||||
# Verify mock was called
|
||||
assert mock_call.called
|
||||
assert "14 million" in str(result)
|
||||
|
||||
|
||||
def test_anthropic_completion_call_arguments():
|
||||
"""
|
||||
Test that AnthropicCompletion.call is invoked with correct arguments
|
||||
"""
|
||||
# Create LLM instance first
|
||||
anthropic_llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
|
||||
|
||||
# Mock the instance method
|
||||
with patch.object(anthropic_llm, 'call') as mock_call:
|
||||
mock_call.return_value = "Task completed successfully."
|
||||
|
||||
agent = Agent(
|
||||
role="Test Agent",
|
||||
goal="Complete a simple task",
|
||||
backstory="You are a test agent.",
|
||||
llm=anthropic_llm # Use same instance
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Say hello world",
|
||||
expected_output="Hello world",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
crew = Crew(agents=[agent], tasks=[task])
|
||||
crew.kickoff()
|
||||
|
||||
# Verify call was made
|
||||
assert mock_call.called
|
||||
|
||||
# Check the arguments passed to the call method
|
||||
call_args = mock_call.call_args
|
||||
assert call_args is not None
|
||||
|
||||
# The first argument should be the messages
|
||||
messages = call_args[0][0] # First positional argument
|
||||
assert isinstance(messages, (str, list))
|
||||
|
||||
# Verify that the task description appears in the messages
|
||||
if isinstance(messages, str):
|
||||
assert "hello world" in messages.lower()
|
||||
elif isinstance(messages, list):
|
||||
message_content = str(messages).lower()
|
||||
assert "hello world" in message_content
|
||||
|
||||
|
||||
def test_multiple_anthropic_calls_in_crew():
|
||||
"""
|
||||
Test that AnthropicCompletion.call is invoked multiple times for multiple tasks
|
||||
"""
|
||||
# Create LLM instance first
|
||||
anthropic_llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
|
||||
|
||||
# Mock the instance method
|
||||
with patch.object(anthropic_llm, 'call') as mock_call:
|
||||
mock_call.return_value = "Task completed."
|
||||
|
||||
agent = Agent(
|
||||
role="Multi-task Agent",
|
||||
goal="Complete multiple tasks",
|
||||
backstory="You can handle multiple tasks.",
|
||||
llm=anthropic_llm # Use same instance
|
||||
)
|
||||
|
||||
task1 = Task(
|
||||
description="First task",
|
||||
expected_output="First result",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
task2 = Task(
|
||||
description="Second task",
|
||||
expected_output="Second result",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
agents=[agent],
|
||||
tasks=[task1, task2]
|
||||
)
|
||||
crew.kickoff()
|
||||
|
||||
# Verify multiple calls were made
|
||||
assert mock_call.call_count >= 2 # At least one call per task
|
||||
|
||||
# Verify each call had proper arguments
|
||||
for call in mock_call.call_args_list:
|
||||
assert len(call[0]) > 0 # Has positional arguments
|
||||
messages = call[0][0]
|
||||
assert messages is not None
|
||||
|
||||
|
||||
def test_anthropic_completion_with_tools():
|
||||
"""
|
||||
Test that AnthropicCompletion.call is invoked with tools when agent has tools
|
||||
"""
|
||||
from crewai.tools import tool
|
||||
|
||||
@tool
|
||||
def sample_tool(query: str) -> str:
|
||||
"""A sample tool for testing"""
|
||||
return f"Tool result for: {query}"
|
||||
|
||||
# Create LLM instance first
|
||||
anthropic_llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
|
||||
|
||||
# Mock the instance method
|
||||
with patch.object(anthropic_llm, 'call') as mock_call:
|
||||
mock_call.return_value = "Task completed with tools."
|
||||
|
||||
agent = Agent(
|
||||
role="Tool User",
|
||||
goal="Use tools to complete tasks",
|
||||
backstory="You can use tools.",
|
||||
llm=anthropic_llm, # Use same instance
|
||||
tools=[sample_tool]
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Use the sample tool",
|
||||
expected_output="Tool usage result",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
crew = Crew(agents=[agent], tasks=[task])
|
||||
crew.kickoff()
|
||||
|
||||
assert mock_call.called
|
||||
|
||||
call_args = mock_call.call_args
|
||||
call_kwargs = call_args[1] if len(call_args) > 1 else {}
|
||||
|
||||
if 'tools' in call_kwargs:
|
||||
assert call_kwargs['tools'] is not None
|
||||
assert len(call_kwargs['tools']) > 0
|
||||
|
||||
|
||||
def test_anthropic_raises_error_when_model_not_supported():
|
||||
"""Test that AnthropicCompletion raises ValueError when model not supported"""
|
||||
|
||||
# Mock the Anthropic client to raise an error
|
||||
with patch('crewai.llms.providers.anthropic.completion.Anthropic') as mock_anthropic_class:
|
||||
mock_client = MagicMock()
|
||||
mock_anthropic_class.return_value = mock_client
|
||||
|
||||
# Mock the error that Anthropic would raise for unsupported models
|
||||
from anthropic import NotFoundError
|
||||
mock_client.messages.create.side_effect = NotFoundError(
|
||||
message="The model `model-doesnt-exist` does not exist",
|
||||
response=MagicMock(),
|
||||
body={}
|
||||
)
|
||||
|
||||
llm = LLM(model="anthropic/model-doesnt-exist")
|
||||
|
||||
with pytest.raises(Exception): # Should raise some error for unsupported model
|
||||
llm.call("Hello")
|
||||
|
||||
|
||||
def test_anthropic_client_params_setup():
|
||||
"""
|
||||
Test that client_params are properly merged with default client parameters
|
||||
"""
|
||||
# Use only valid Anthropic client parameters
|
||||
custom_client_params = {
|
||||
"default_headers": {"X-Custom-Header": "test-value"},
|
||||
}
|
||||
|
||||
with patch.dict(os.environ, {"ANTHROPIC_API_KEY": "test-key"}):
|
||||
llm = LLM(
|
||||
model="anthropic/claude-3-5-sonnet-20241022",
|
||||
api_key="test-key",
|
||||
base_url="https://custom-api.com",
|
||||
timeout=45,
|
||||
max_retries=5,
|
||||
client_params=custom_client_params
|
||||
)
|
||||
|
||||
from crewai.llms.providers.anthropic.completion import AnthropicCompletion
|
||||
assert isinstance(llm, AnthropicCompletion)
|
||||
|
||||
assert llm.client_params == custom_client_params
|
||||
|
||||
merged_params = llm._get_client_params()
|
||||
|
||||
assert merged_params["api_key"] == "test-key"
|
||||
assert merged_params["base_url"] == "https://custom-api.com"
|
||||
assert merged_params["timeout"] == 45
|
||||
assert merged_params["max_retries"] == 5
|
||||
|
||||
assert merged_params["default_headers"] == {"X-Custom-Header": "test-value"}
|
||||
|
||||
|
||||
def test_anthropic_client_params_override_defaults():
|
||||
"""
|
||||
Test that client_params can override default client parameters
|
||||
"""
|
||||
override_client_params = {
|
||||
"timeout": 120, # Override the timeout parameter
|
||||
"max_retries": 10, # Override the max_retries parameter
|
||||
"default_headers": {"X-Override": "true"} # Valid custom parameter
|
||||
}
|
||||
|
||||
with patch.dict(os.environ, {"ANTHROPIC_API_KEY": "test-key"}):
|
||||
llm = LLM(
|
||||
model="anthropic/claude-3-5-sonnet-20241022",
|
||||
api_key="test-key",
|
||||
timeout=30,
|
||||
max_retries=3,
|
||||
client_params=override_client_params
|
||||
)
|
||||
|
||||
# Verify this is actually AnthropicCompletion, not LiteLLM fallback
|
||||
from crewai.llms.providers.anthropic.completion import AnthropicCompletion
|
||||
assert isinstance(llm, AnthropicCompletion)
|
||||
|
||||
merged_params = llm._get_client_params()
|
||||
|
||||
# client_params should override the individual parameters
|
||||
assert merged_params["timeout"] == 120
|
||||
assert merged_params["max_retries"] == 10
|
||||
assert merged_params["default_headers"] == {"X-Override": "true"}
|
||||
|
||||
|
||||
def test_anthropic_client_params_none():
|
||||
"""
|
||||
Test that client_params=None works correctly (no additional parameters)
|
||||
"""
|
||||
with patch.dict(os.environ, {"ANTHROPIC_API_KEY": "test-key"}):
|
||||
llm = LLM(
|
||||
model="anthropic/claude-3-5-sonnet-20241022",
|
||||
api_key="test-key",
|
||||
base_url="https://api.anthropic.com",
|
||||
timeout=60,
|
||||
max_retries=2,
|
||||
client_params=None
|
||||
)
|
||||
|
||||
from crewai.llms.providers.anthropic.completion import AnthropicCompletion
|
||||
assert isinstance(llm, AnthropicCompletion)
|
||||
|
||||
assert llm.client_params is None
|
||||
|
||||
merged_params = llm._get_client_params()
|
||||
|
||||
expected_keys = {"api_key", "base_url", "timeout", "max_retries"}
|
||||
assert set(merged_params.keys()) == expected_keys
|
||||
|
||||
# Fixed assertions - all should be inside the with block and use correct values
|
||||
assert merged_params["api_key"] == "test-key" # Not "test-anthropic-key"
|
||||
assert merged_params["base_url"] == "https://api.anthropic.com"
|
||||
assert merged_params["timeout"] == 60
|
||||
assert merged_params["max_retries"] == 2
|
||||
|
||||
|
||||
def test_anthropic_client_params_empty_dict():
|
||||
"""
|
||||
Test that client_params={} works correctly (empty additional parameters)
|
||||
"""
|
||||
with patch.dict(os.environ, {"ANTHROPIC_API_KEY": "test-key"}):
|
||||
llm = LLM(
|
||||
model="anthropic/claude-3-5-sonnet-20241022",
|
||||
api_key="test-key",
|
||||
client_params={}
|
||||
)
|
||||
|
||||
from crewai.llms.providers.anthropic.completion import AnthropicCompletion
|
||||
assert isinstance(llm, AnthropicCompletion)
|
||||
|
||||
assert llm.client_params == {}
|
||||
|
||||
merged_params = llm._get_client_params()
|
||||
|
||||
assert "api_key" in merged_params
|
||||
assert merged_params["api_key"] == "test-key"
|
||||
|
||||
|
||||
def test_anthropic_model_detection():
|
||||
"""
|
||||
Test that various Anthropic model formats are properly detected
|
||||
"""
|
||||
# Test Anthropic model naming patterns that actually work with provider detection
|
||||
anthropic_test_cases = [
|
||||
"anthropic/claude-3-5-sonnet-20241022",
|
||||
"claude/claude-3-5-sonnet-20241022"
|
||||
]
|
||||
|
||||
for model_name in anthropic_test_cases:
|
||||
llm = LLM(model=model_name)
|
||||
from crewai.llms.providers.anthropic.completion import AnthropicCompletion
|
||||
assert isinstance(llm, AnthropicCompletion), f"Failed for model: {model_name}"
|
||||
|
||||
|
||||
def test_anthropic_supports_stop_words():
|
||||
"""
|
||||
Test that Anthropic models support stop sequences
|
||||
"""
|
||||
llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
|
||||
assert llm.supports_stop_words() == True
|
||||
|
||||
|
||||
def test_anthropic_context_window_size():
|
||||
"""
|
||||
Test that Anthropic models return correct context window sizes
|
||||
"""
|
||||
llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
|
||||
context_size = llm.get_context_window_size()
|
||||
|
||||
# Should return a reasonable context window size (Claude 3.5 has 200k tokens)
|
||||
assert context_size > 100000 # Should be substantial
|
||||
assert context_size <= 200000 # But not exceed the actual limit
|
||||
|
||||
|
||||
def test_anthropic_message_formatting():
|
||||
"""
|
||||
Test that messages are properly formatted for Anthropic API
|
||||
"""
|
||||
llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
|
||||
|
||||
# Test message formatting
|
||||
test_messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Hello"},
|
||||
{"role": "assistant", "content": "Hi there!"},
|
||||
{"role": "user", "content": "How are you?"}
|
||||
]
|
||||
|
||||
formatted_messages, system_message = llm._format_messages_for_anthropic(test_messages)
|
||||
|
||||
# System message should be extracted
|
||||
assert system_message == "You are a helpful assistant."
|
||||
|
||||
# Remaining messages should start with user
|
||||
assert formatted_messages[0]["role"] == "user"
|
||||
assert len(formatted_messages) >= 3 # Should have user, assistant, user messages
|
||||
|
||||
|
||||
def test_anthropic_streaming_parameter():
|
||||
"""
|
||||
Test that streaming parameter is properly handled
|
||||
"""
|
||||
# Test non-streaming
|
||||
llm_no_stream = LLM(model="anthropic/claude-3-5-sonnet-20241022", stream=False)
|
||||
assert llm_no_stream.stream == False
|
||||
|
||||
# Test streaming
|
||||
llm_stream = LLM(model="anthropic/claude-3-5-sonnet-20241022", stream=True)
|
||||
assert llm_stream.stream == True
|
||||
|
||||
|
||||
def test_anthropic_tool_conversion():
|
||||
"""
|
||||
Test that tools are properly converted to Anthropic format
|
||||
"""
|
||||
llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
|
||||
|
||||
# Mock tool in CrewAI format
|
||||
crewai_tools = [{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "test_tool",
|
||||
"description": "A test tool",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"query": {"type": "string", "description": "Search query"}
|
||||
},
|
||||
"required": ["query"]
|
||||
}
|
||||
}
|
||||
}]
|
||||
|
||||
# Test tool conversion
|
||||
anthropic_tools = llm._convert_tools_for_interference(crewai_tools)
|
||||
|
||||
assert len(anthropic_tools) == 1
|
||||
assert anthropic_tools[0]["name"] == "test_tool"
|
||||
assert anthropic_tools[0]["description"] == "A test tool"
|
||||
assert "input_schema" in anthropic_tools[0]
|
||||
|
||||
|
||||
def test_anthropic_environment_variable_api_key():
|
||||
"""
|
||||
Test that Anthropic API key is properly loaded from environment
|
||||
"""
|
||||
with patch.dict(os.environ, {"ANTHROPIC_API_KEY": "test-anthropic-key"}):
|
||||
llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
|
||||
|
||||
assert llm.client is not None
|
||||
assert hasattr(llm.client, 'messages')
|
||||
|
||||
|
||||
def test_anthropic_token_usage_tracking():
|
||||
"""
|
||||
Test that token usage is properly tracked for Anthropic responses
|
||||
"""
|
||||
llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
|
||||
|
||||
# Mock the Anthropic response with usage information
|
||||
with patch.object(llm.client.messages, 'create') as mock_create:
|
||||
mock_response = MagicMock()
|
||||
mock_response.content = [MagicMock(text="test response")]
|
||||
mock_response.usage = MagicMock(input_tokens=50, output_tokens=25)
|
||||
mock_create.return_value = mock_response
|
||||
|
||||
result = llm.call("Hello")
|
||||
|
||||
# Verify the response
|
||||
assert result == "test response"
|
||||
|
||||
# Verify token usage was extracted
|
||||
usage = llm._extract_anthropic_token_usage(mock_response)
|
||||
assert usage["input_tokens"] == 50
|
||||
assert usage["output_tokens"] == 25
|
||||
assert usage["total_tokens"] == 75
|
||||
Reference in New Issue
Block a user