Adding new tool usage and parsing logic

This commit is contained in:
João Moura
2024-02-19 22:43:10 -03:00
parent 6da94c1bba
commit 3cfc8dd4e0
9 changed files with 256 additions and 101 deletions

View File

@@ -1,6 +1,6 @@
from textwrap import dedent
from typing import Any, List, Union
import instructor
from langchain.prompts import PromptTemplate
from langchain_core.tools import BaseTool
from langchain_openai import ChatOpenAI
@@ -9,7 +9,9 @@ from crewai.agents.tools_handler import ToolsHandler
from crewai.telemtry import Telemetry
from crewai.tools.tool_calling import InstructorToolCalling, ToolCalling
from crewai.tools.tool_output_parser import ToolOutputParser
from crewai.utilities import I18N, Printer
from crewai.utilities import I18N, Instructor, Printer
OPENAI_BIGGER_MODELS = ["gpt-4"]
class ToolUsageErrorException(Exception):
@@ -31,6 +33,7 @@ class ToolUsage:
tools_description: Description of the tools available for the agent.
tools_names: Names of the tools available for the agent.
llm: Language model to be used for the tool usage.
function_calling_llm: Language model to be used for the tool usage.
"""
def __init__(
@@ -47,18 +50,28 @@ class ToolUsage:
self._printer: Printer = Printer()
self._telemetry: Telemetry = Telemetry()
self._run_attempts: int = 1
self._max_parsing_attempts: int = 2
self._max_parsing_attempts: int = 3
self._remeber_format_after_usages: int = 3
self.tools_description = tools_description
self.tools_names = tools_names
self.tools_handler = tools_handler
self.tools = tools
self.task = task
self.llm = llm
self.function_calling_llm = function_calling_llm
self.llm = function_calling_llm or llm
def use(self, tool_string: str):
calling = self._tool_calling(tool_string)
# Set the maximum parsing attempts for bigger models
if (isinstance(self.llm, ChatOpenAI)) and (self.llm.openai_api_base == None):
if self.llm.model_name in OPENAI_BIGGER_MODELS:
self._max_parsing_attempts = 2
self._remeber_format_after_usages = 4
def parse(self, tool_string: str):
"""Parse the tool string and return the tool calling."""
return self._tool_calling(tool_string)
def use(
self, calling: Union[ToolCalling, InstructorToolCalling], tool_string: str
) -> str:
if isinstance(calling, ToolUsageErrorException):
error = calling.message
self._printer.print(content=f"\n\n{error}\n", color="red")
@@ -69,7 +82,7 @@ class ToolUsage:
error = getattr(e, "message", str(e))
self._printer.print(content=f"\n\n{error}\n", color="red")
return error
return self._use(tool_string=tool_string, tool=tool, calling=calling)
return f"{self._use(tool_string=tool_string, tool=tool, calling=calling)}\n{self._i18n.slice('final_answer_format')}"
def _use(
self,
@@ -106,11 +119,11 @@ class ToolUsage:
if self._run_attempts > self._max_parsing_attempts:
self._telemetry.tool_usage_error(llm=self.llm)
error = ToolUsageErrorException(
self._i18n.errors("tool_usage_exception").format(error=e)
f'{self._i18n.errors("tool_usage_exception").format(error=e)}.\n{self._i18n.slice("format").format(tool_names=self.tools_names)}'
).message
self._printer.print(content=f"\n\n{error}\n", color="red")
return error
return self.use(tool_string=tool_string)
return self.use(calling=calling, tool_string=tool_string)
self.tools_handler.on_tool_use(calling=calling, output=result)
@@ -174,69 +187,55 @@ class ToolUsage:
self, tool_string: str
) -> Union[ToolCalling, InstructorToolCalling]:
try:
tool_string = tool_string.replace(
"Thought: Do I need to use a tool? Yes", ""
)
tool_string = tool_string.replace("Action:", "Tool Name:")
tool_string = tool_string.replace("Action Input:", "Tool Arguments:")
if (isinstance(self.llm, ChatOpenAI)) and (
self.llm.openai_api_base == None
):
instructor = Instructor(
llm=self.llm,
model=InstructorToolCalling,
content=f"Tools available:\n\n{self._render()}\n\nReturn a valid schema for the tool, the tool name must be equal one of the options, use this text to inform a valid ouput schema:\n{tool_string}```",
instructions=dedent(
"""\
The schema should have the following structure, only two keys:
- tool_name: str
- arguments: dict (with all arguments being passed)
llm = self.function_calling_llm or self.llm
if (isinstance(llm, ChatOpenAI)) and (llm.openai_api_base == None):
client = instructor.patch(
llm.client._client,
mode=instructor.Mode.FUNCTIONS,
)
calling = client.chat.completions.create(
model=llm.model_name,
messages=[
{
"role": "system",
"content": """
The schema should have the following structure, only two key:
- tool_name: str
- arguments: dict (with all arguments being passed)
Example:
{"tool_name": "tool_name", "arguments": {"arg_name1": "value", "arg_name2": 2}}
""",
},
{
"role": "user",
"content": f"Tools available:\n\n{self._render()}\n\nReturn a valid schema for the tool, use this text to inform a valid ouput schema:\n{tool_string}```",
},
],
response_model=InstructorToolCalling,
Example:
{"tool_name": "tool_name", "arguments": {"arg_name1": "value", "arg_name2": 2}}
"""
),
)
calling = instructor.to_pydantic()
else:
parser = ToolOutputParser(pydantic_object=ToolCalling)
prompt = PromptTemplate(
template="Tools available:\n\n{available_tools}\n\nReturn a valid schema for the tool, use this text to inform a valid ouput schema:\n{tool_string}\n\n{format_instructions}\n```",
template="Tools available:\n\n{available_tools}\n\nReturn a valid schema for the tool, the tool name must be equal one of the options, use this text to inform a valid ouput schema:\n{tool_string}\n\n{format_instructions}\n```",
input_variables=["tool_string"],
partial_variables={
"available_tools": self._render(),
"format_instructions": """
The schema should have the following structure, only two key:
"format_instructions": dedent(
"""\
The schema should have the following structure, only two keys:
- tool_name: str
- arguments: dict (with all arguments being passed)
Example:
{"tool_name": "tool_name", "arguments": {"arg_name1": "value", "arg_name2": 2}}
""",
"""
),
},
)
chain = prompt | llm | parser
chain = prompt | self.llm | parser
calling = chain.invoke({"tool_string": tool_string})
except Exception as e:
self._run_attempts += 1
if self._run_attempts > self._max_parsing_attempts:
self._telemetry.tool_usage_error(llm=llm)
error = ToolUsageErrorException(
self._i18n.errors("tool_usage_exception").format(error=e)
).message
self._printer.print(content=f"\n\n{error}\n", color="red")
return error
self._telemetry.tool_usage_error(llm=self.llm)
self._printer.print(content=f"\n\n{e}\n", color="red")
return ToolUsageErrorException(
f'{self._i18n.errors("tool_usage_error")}.\n{self._i18n.slice("format").format(tool_names=self.tools_names)}'
)
return self._tool_calling(tool_string)
return calling