Merge in main to bugfix/kickoff-for-each-usage-metrics

This commit is contained in:
Brandon Hancock
2024-07-01 14:00:13 -04:00
parent 1d2827e9a5
commit 2efe16eac9
54 changed files with 411517 additions and 6465 deletions

View File

@@ -3,17 +3,22 @@ import re
import threading
import uuid
from copy import copy
from typing import Any, Dict, List, Optional, Type
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Type, Union
from langchain_openai import ChatOpenAI
from opentelemetry.trace import Span
from pydantic import UUID4, BaseModel, Field, field_validator, model_validator
from pydantic_core import PydanticCustomError
from crewai.agent import Agent
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.tasks.task_output import TaskOutput
from crewai.utilities import I18N, Converter, ConverterError, Printer
from crewai.telemetry.telemetry import Telemetry
from crewai.utilities import I18N, ConverterError, Printer
from crewai.utilities.pydantic_schema_parser import PydanticSchemaParser
if TYPE_CHECKING:
from crewai.agents import Agent
class Task(BaseModel):
"""Class that represents a task to be executed.
@@ -42,7 +47,6 @@ class Task(BaseModel):
tools_errors: int = 0
delegations: int = 0
i18n: I18N = I18N()
thread: Optional[threading.Thread] = None
prompt_context: Optional[str] = None
description: str = Field(description="Description of the actual task.")
expected_output: str = Field(
@@ -55,7 +59,7 @@ class Task(BaseModel):
callback: Optional[Any] = Field(
description="Callback to be executed after the task is completed.", default=None
)
agent: Optional[Agent] = Field(
agent: Optional[BaseAgent] = Field(
description="Agent responsible for execution the task.", default=None
)
context: Optional[List["Task"]] = Field(
@@ -95,8 +99,11 @@ class Task(BaseModel):
default=False,
)
_telemetry: Telemetry
_execution_span: Span | None = None
_original_description: str | None = None
_original_expected_output: str | None = None
_thread: threading.Thread | None = None
def __init__(__pydantic_self__, **data):
config = data.pop("config", {})
@@ -118,6 +125,12 @@ class Task(BaseModel):
return value[1:]
return value
@model_validator(mode="after")
def set_private_attrs(self) -> "Task":
"""Set private attributes."""
self._telemetry = Telemetry()
return self
@model_validator(mode="after")
def set_attributes_based_on_config(self) -> "Task":
"""Set attributes based on the agent configuration."""
@@ -145,9 +158,21 @@ class Task(BaseModel):
)
return self
def wait_for_completion(self) -> str | BaseModel:
"""Wait for asynchronous task completion and return the output."""
assert self.async_execution, "Task is not set to be executed asynchronously."
if self._thread:
self._thread.join()
self._thread = None
assert self.output, "Task output is not set."
return self.output.exported_output
def execute( # type: ignore # Missing return statement
self,
agent: Agent | None = None,
agent: BaseAgent | None = None,
context: Optional[str] = None,
tools: Optional[List[Any]] = None,
) -> str:
@@ -157,6 +182,8 @@ class Task(BaseModel):
Output of the task.
"""
self._execution_span = self._telemetry.task_started(self)
agent = agent or self.agent
if not agent:
raise Exception(
@@ -168,8 +195,8 @@ class Task(BaseModel):
context = []
for task in self.context:
if task.async_execution:
task.thread.join() # type: ignore # Item "None" of "Thread | None" has no attribute "join"
if task and task.output:
task.wait_for_completion()
if task.output:
# type: ignore # Item "str" of "str | None" has no attribute "append"
context.append(task.output.raw_output)
# type: ignore # Argument 1 to "join" of "str" has incompatible type "str | None"; expected "Iterable[str]"
@@ -179,10 +206,10 @@ class Task(BaseModel):
tools = tools or self.tools
if self.async_execution:
self.thread = threading.Thread(
self._thread = threading.Thread(
target=self._execute, args=(agent, self, context, tools)
)
self.thread.start()
self._thread.start()
else:
result = self._execute(
task=self,
@@ -192,15 +219,15 @@ class Task(BaseModel):
)
return result
def _execute(self, agent: Agent, task, context, tools):
def _execute(self, agent: "Agent", task, context, tools):
result = agent.execute_task(
task=task,
context=context,
tools=tools,
)
exported_output = self._export_output(result)
# type: ignore # the responses are usually str but need to figure out a more elegant solution here
self.output = TaskOutput(
description=self.description,
exported_output=exported_output,
@@ -211,6 +238,10 @@ class Task(BaseModel):
if self.callback:
self.callback(self.output)
if self._execution_span:
self._telemetry.task_ended(self._execution_span, self)
self._execution_span = None
return exported_output
def prompt(self) -> str:
@@ -246,7 +277,7 @@ class Task(BaseModel):
"""Increment the delegations counter."""
self.delegations += 1
def copy(self, agents: Optional[List[Agent]] = None) -> "Task":
def copy(self, agents: Optional[List["Agent"]] = None) -> "Task":
"""Create a deep copy of the Task."""
exclude = {
"id",
@@ -262,15 +293,11 @@ class Task(BaseModel):
[task.copy() for task in self.context] if self.context else None
)
# TODO: Make sure this clone approach is correct.
def get_agent_by_role(role: str) -> Agent | None:
def get_agent_by_role(role: str) -> Union["Agent", None]:
return next((agent for agent in agents if agent.role == role), None)
cloned_agent = get_agent_by_role(self.agent.role) if self.agent else None
# cloned_agent = self.agent.copy() if self.agent else None
print("TOOLS BEFORE COPY", self.tools)
cloned_tools = copy(self.tools) if self.tools else []
print("TOOLS AFTER COPY", cloned_tools)
copied_task = Task(
**copied_data,
@@ -311,14 +338,13 @@ class Task(BaseModel):
pass
# type: ignore # Item "None" of "Agent | None" has no attribute "function_calling_llm"
llm = self.agent.function_calling_llm or self.agent.llm
llm = getattr(self.agent, "function_calling_llm", None) or self.agent.llm
if not self._is_gpt(llm):
# type: ignore # Argument "model" to "PydanticSchemaParser" has incompatible type "type[BaseModel] | None"; expected "type[BaseModel]"
model_schema = PydanticSchemaParser(model=model).get_schema()
instructions = f"{instructions}\n\nThe json should have the following structure, with the following keys:\n{model_schema}"
converter = Converter(
converter = self.agent.get_output_converter(
llm=llm, text=result, model=model, instructions=instructions
)