Merge in main to bugfix/kickoff-for-each-usage-metrics

This commit is contained in:
Brandon Hancock
2024-07-01 14:00:13 -04:00
parent 1d2827e9a5
commit 2efe16eac9
54 changed files with 411517 additions and 6465 deletions

View File

@@ -2,3 +2,5 @@ from crewai.agent import Agent
from crewai.crew import Crew
from crewai.process import Process
from crewai.task import Task
__all__ = ["Agent", "Crew", "Process", "Task"]

View File

@@ -1,7 +1,6 @@
import os
import uuid
from copy import copy, deepcopy
from typing import Any, Dict, List, Optional, Tuple
from copy import copy
from typing import Any, List, Optional, Tuple
from langchain.agents.agent import RunnableAgent
from langchain.agents.tools import tool as LangChainTool
@@ -9,25 +8,19 @@ from langchain.tools.render import render_text_description
from langchain_core.agents import AgentAction
from langchain_core.callbacks import BaseCallbackHandler
from langchain_openai import ChatOpenAI
from pydantic import (
UUID4,
BaseModel,
ConfigDict,
Field,
InstanceOf,
PrivateAttr,
field_validator,
model_validator,
)
from pydantic_core import PydanticCustomError
from pydantic import Field, InstanceOf, model_validator
from crewai.agents import CacheHandler, CrewAgentExecutor, CrewAgentParser, ToolsHandler
from crewai.agents import CacheHandler, CrewAgentExecutor, CrewAgentParser
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.utilities import I18N, Logger, Prompts, RPMController
from crewai.utilities.token_counter_callback import TokenCalcHandler, TokenProcess
from crewai.tools.agent_tools import AgentTools
from crewai.utilities import Converter, Prompts
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
from crewai.utilities.token_counter_callback import TokenCalcHandler
from crewai.utilities.training_handler import CrewTrainingHandler
class Agent(BaseModel):
class Agent(BaseAgent):
"""Represents an agent in a system.
Each agent has a role, a goal, a backstory, and an optional language model (llm).
@@ -51,57 +44,10 @@ class Agent(BaseModel):
callbacks: A list of callback functions from the langchain library that are triggered during the agent's execution process
"""
__hash__ = object.__hash__ # type: ignore
_logger: Logger = PrivateAttr()
_rpm_controller: RPMController = PrivateAttr(default=None)
_request_within_rpm_limit: Any = PrivateAttr(default=None)
_token_process: TokenProcess = PrivateAttr(default=TokenProcess())
formatting_errors: int = 0
model_config = ConfigDict(arbitrary_types_allowed=True)
id: UUID4 = Field(
default_factory=uuid.uuid4,
frozen=True,
description="Unique identifier for the object, not set by user.",
)
role: str = Field(description="Role of the agent")
goal: str = Field(description="Objective of the agent")
backstory: str = Field(description="Backstory of the agent")
cache: bool = Field(
default=True,
description="Whether the agent should use a cache for tool usage.",
)
config: Optional[Dict[str, Any]] = Field(
description="Configuration for the agent",
default=None,
)
max_rpm: Optional[int] = Field(
default=None,
description="Maximum number of requests per minute for the agent execution to be respected.",
)
verbose: bool = Field(
default=False, description="Verbose mode for the Agent Execution"
)
allow_delegation: bool = Field(
default=True, description="Allow delegation of tasks to agents"
)
tools: Optional[List[Any]] = Field(
default_factory=list, description="Tools at agents disposal"
)
max_iter: Optional[int] = Field(
default=25, description="Maximum iterations for an agent to execute a task"
)
max_execution_time: Optional[int] = Field(
default=None,
description="Maximum execution time for an agent to execute a task",
)
agent_executor: InstanceOf[CrewAgentExecutor] = Field(
default=None, description="An instance of the CrewAgentExecutor class."
)
crew: Any = Field(default=None, description="Crew to which the agent belongs.")
tools_handler: InstanceOf[ToolsHandler] = Field(
default=None, description="An instance of the ToolsHandler class."
)
cache_handler: InstanceOf[CacheHandler] = Field(
default=None, description="An instance of the CacheHandler class."
)
@@ -109,7 +55,6 @@ class Agent(BaseModel):
default=None,
description="Callback to be executed after each step of the agent execution.",
)
i18n: I18N = Field(default=I18N(), description="Internationalization settings.")
llm: Any = Field(
default_factory=lambda: ChatOpenAI(
model=os.environ.get("OPENAI_MODEL_NAME", "gpt-4o")
@@ -132,46 +77,17 @@ class Agent(BaseModel):
default=None, description="Response format for the agent."
)
_original_role: str | None = None
_original_goal: str | None = None
_original_backstory: str | None = None
allow_code_execution: Optional[bool] = Field(
default=False, description="Enable code execution for the agent."
)
def __init__(__pydantic_self__, **data):
config = data.pop("config", {})
super().__init__(**config, **data)
@field_validator("id", mode="before")
@classmethod
def _deny_user_set_id(cls, v: Optional[UUID4]) -> None:
if v:
raise PydanticCustomError(
"may_not_set_field", "This field is not to be set by the user.", {}
)
@model_validator(mode="after")
def set_attributes_based_on_config(self) -> "Agent":
"""Set attributes based on the agent configuration."""
if self.config:
for key, value in self.config.items():
setattr(self, key, value)
return self
@model_validator(mode="after")
def set_private_attrs(self):
"""Set private attributes."""
self._logger = Logger(self.verbose)
if self.max_rpm and not self._rpm_controller:
self._rpm_controller = RPMController(
max_rpm=self.max_rpm, logger=self._logger
)
return self
@model_validator(mode="after")
def set_agent_executor(self) -> "Agent":
"""set agent executor is set."""
print(
f"CREW ID: {self.id} - SET AGENT EXECUTOR model name", self.llm.model_name
)
"""Ensure agent executor and token process are set."""
if hasattr(self.llm, "model_name"):
token_handler = TokenCalcHandler(self.llm.model_name, self._token_process)
@@ -180,7 +96,6 @@ class Agent(BaseModel):
self.llm.callbacks = []
# Check if an instance of TokenCalcHandler already exists in the list
print(f"CREW ID : {self.id} - self.llm.callbacks", self.llm.callbacks)
if not any(
isinstance(handler, TokenCalcHandler) for handler in self.llm.callbacks
):
@@ -231,8 +146,7 @@ class Agent(BaseModel):
tools = tools or self.tools
# type: ignore # Argument 1 to "_parse_tools" of "Agent" has incompatible type "list[Any] | None"; expected "list[Any]"
parsed_tools = self._parse_tools(tools)
parsed_tools = self._parse_tools(tools or [])
self.create_agent_executor(tools=tools)
self.agent_executor.tools = parsed_tools
self.agent_executor.task = task
@@ -240,6 +154,11 @@ class Agent(BaseModel):
self.agent_executor.tools_description = render_text_description(parsed_tools)
self.agent_executor.tools_names = self.__tools_names(parsed_tools)
if self.crew and self.crew._train:
task_prompt = self._training_handler(task_prompt=task_prompt)
else:
task_prompt = self._use_trained_data(task_prompt=task_prompt)
result = self.agent_executor.invoke(
{
"input": task_prompt,
@@ -247,33 +166,22 @@ class Agent(BaseModel):
"tools": self.agent_executor.tools_description,
}
)["output"]
if self.max_rpm:
self._rpm_controller.stop_rpm_counter()
return result
def set_cache_handler(self, cache_handler: CacheHandler) -> None:
"""Set the cache handler for the agent.
Args:
cache_handler: An instance of the CacheHandler class.
"""
self.tools_handler = ToolsHandler()
if self.cache:
self.cache_handler = cache_handler
self.tools_handler.cache = cache_handler
self.create_agent_executor()
def set_rpm_controller(self, rpm_controller: RPMController) -> None:
"""Set the rpm controller for the agent.
Args:
rpm_controller: An instance of the RPMController class.
"""
if not self._rpm_controller:
self._rpm_controller = rpm_controller
self.create_agent_executor()
def format_log_to_str(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
observation_prefix: str = "Observation: ",
llm_prefix: str = "",
) -> str:
"""Construct the scratchpad that lets the agent continue its thought process."""
thoughts = ""
for action, observation in intermediate_steps:
thoughts += action.log
thoughts += f"\n{observation_prefix}{observation}\n{llm_prefix}"
return thoughts
def create_agent_executor(self, tools=None) -> None:
"""Create an agent executor for the agent.
@@ -329,47 +237,36 @@ class Agent(BaseModel):
)
stop_words = [self.i18n.slice("observation")]
if self.response_template:
stop_words.append(
self.response_template.split("{{ .Response }}")[1].strip()
)
bind = self.llm.bind(stop=stop_words)
inner_agent = agent_args | execution_prompt | bind | CrewAgentParser(agent=self)
self.agent_executor = CrewAgentExecutor(
agent=RunnableAgent(runnable=inner_agent), **executor_args
)
def interpolate_inputs(self, inputs: Dict[str, Any]) -> None:
"""Interpolate inputs into the agent description and backstory."""
if self._original_role is None:
self._original_role = self.role
if self._original_goal is None:
self._original_goal = self.goal
if self._original_backstory is None:
self._original_backstory = self.backstory
def get_delegation_tools(self, agents: List[BaseAgent]):
agent_tools = AgentTools(agents=agents)
tools = agent_tools.tools()
return tools
if inputs:
self.role = self._original_role.format(**inputs)
self.goal = self._original_goal.format(**inputs)
self.backstory = self._original_backstory.format(**inputs)
def get_code_execution_tools(self):
try:
from crewai_tools import CodeInterpreterTool
def increment_formatting_errors(self) -> None:
"""Count the formatting errors of the agent."""
self.formatting_errors += 1
return [CodeInterpreterTool()]
except ModuleNotFoundError:
self._logger.log(
"info", "Coding tools not available. Install crewai_tools. "
)
def format_log_to_str(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
observation_prefix: str = "Observation: ",
llm_prefix: str = "",
) -> str:
"""Construct the scratchpad that lets the agent continue its thought process."""
thoughts = ""
for action, observation in intermediate_steps:
thoughts += action.log
thoughts += f"\n{observation_prefix}{observation}\n{llm_prefix}"
return thoughts
def get_output_converter(self, llm, text, model, instructions):
return Converter(llm=llm, text=text, model=model, instructions=instructions)
def copy(self):
"""Create a deep copy of the Agent."""
@@ -386,27 +283,21 @@ class Agent(BaseModel):
"llm",
}
print("EXISTING LLM", self.llm)
# TODO: TEST REMOVING THIS AND SEE IF ANYTHING CHANGES
existing_llm = copy(self.llm)
print("COPIED LLM", existing_llm)
# TODO: EXPAND ON WHY THIS IS NEEDED
# RESET LLM CALLBACKS
existing_llm.callbacks = []
print("RESET LLM CALLBACKS", existing_llm)
copied_data = self.model_dump(exclude=exclude)
print("COPIED DATA FOR AGENT", copied_data)
copied_data = {k: v for k, v in copied_data.items() if v is not None}
copied_agent = Agent(**copied_data, llm=existing_llm, tools=self.tools)
return copied_agent
# type: ignore # Function "langchain_core.tools.tool" is not valid as a type
def _parse_tools(self, tools: List[Any]) -> List[LangChainTool]:
"""Parse tools to be used for the task."""
# tentatively try to import from crewai_tools import BaseTool as CrewAITool
tools_list = []
try:
# tentatively try to import from crewai_tools import BaseTool as CrewAITool
from crewai_tools import BaseTool as CrewAITool
for tool in tools:
@@ -415,10 +306,35 @@ class Agent(BaseModel):
else:
tools_list.append(tool)
except ModuleNotFoundError:
tools_list = []
for tool in tools:
tools_list.append(tool)
return tools_list
def _training_handler(self, task_prompt: str) -> str:
"""Handle training data for the agent task prompt to improve output on Training."""
if data := CrewTrainingHandler(TRAINING_DATA_FILE).load():
agent_id = str(self.id)
if data.get(agent_id):
human_feedbacks = [
i["human_feedback"] for i in data.get(agent_id, {}).values()
]
task_prompt += "You MUST follow these feedbacks: \n " + "\n - ".join(
human_feedbacks
)
return task_prompt
def _use_trained_data(self, task_prompt: str) -> str:
"""Use trained data for the agent task prompt to improve output."""
if data := CrewTrainingHandler(TRAINED_AGENTS_DATA_FILE).load():
if trained_data_output := data.get(self.role):
task_prompt += "You MUST follow these feedbacks: \n " + "\n - ".join(
trained_data_output["suggestions"]
)
return task_prompt
@staticmethod
def __tools_names(tools) -> str:
return ", ".join([t.name for t in tools])

View File

@@ -0,0 +1,233 @@
import uuid
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional
from pydantic import (
UUID4,
BaseModel,
ConfigDict,
Field,
InstanceOf,
PrivateAttr,
field_validator,
model_validator,
)
from pydantic_core import PydanticCustomError
from crewai.agents import CacheHandler, ToolsHandler
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
from crewai.utilities import I18N, Logger, RPMController
class BaseAgent(ABC, BaseModel):
"""Abstract Base Class for all third party agents compatible with CrewAI.
Attributes:
id (UUID4): Unique identifier for the agent.
role (str): Role of the agent.
goal (str): Objective of the agent.
backstory (str): Backstory of the agent.
cache (bool): Whether the agent should use a cache for tool usage.
config (Optional[Dict[str, Any]]): Configuration for the agent.
verbose (bool): Verbose mode for the Agent Execution.
max_rpm (Optional[int]): Maximum number of requests per minute for the agent execution.
allow_delegation (bool): Allow delegation of tasks to agents.
tools (Optional[List[Any]]): Tools at the agent's disposal.
max_iter (Optional[int]): Maximum iterations for an agent to execute a task.
agent_executor (InstanceOf): An instance of the CrewAgentExecutor class.
llm (Any): Language model that will run the agent.
crew (Any): Crew to which the agent belongs.
i18n (I18N): Internationalization settings.
cache_handler (InstanceOf[CacheHandler]): An instance of the CacheHandler class.
tools_handler (InstanceOf[ToolsHandler]): An instance of the ToolsHandler class.
Methods:
execute_task(task: Any, context: Optional[str] = None, tools: Optional[List[Any]] = None) -> str:
Abstract method to execute a task.
create_agent_executor(tools=None) -> None:
Abstract method to create an agent executor.
_parse_tools(tools: List[Any]) -> List[Any]:
Abstract method to parse tools.
get_delegation_tools(agents: List["BaseAgent"]):
Abstract method to set the agents task tools for handling delegation and question asking to other agents in crew.
get_output_converter(llm, model, instructions):
Abstract method to get the converter class for the agent to create json/pydantic outputs.
interpolate_inputs(inputs: Dict[str, Any]) -> None:
Interpolate inputs into the agent description and backstory.
set_cache_handler(cache_handler: CacheHandler) -> None:
Set the cache handler for the agent.
increment_formatting_errors() -> None:
Increment formatting errors.
copy() -> "BaseAgent":
Create a copy of the agent.
set_rpm_controller(rpm_controller: RPMController) -> None:
Set the rpm controller for the agent.
set_private_attrs() -> "BaseAgent":
Set private attributes.
"""
__hash__ = object.__hash__ # type: ignore
_logger: Logger = PrivateAttr()
_rpm_controller: RPMController = PrivateAttr(default=None)
_request_within_rpm_limit: Any = PrivateAttr(default=None)
formatting_errors: int = 0
model_config = ConfigDict(arbitrary_types_allowed=True)
id: UUID4 = Field(default_factory=uuid.uuid4, frozen=True)
role: str = Field(description="Role of the agent")
goal: str = Field(description="Objective of the agent")
backstory: str = Field(description="Backstory of the agent")
cache: bool = Field(
default=True, description="Whether the agent should use a cache for tool usage."
)
config: Optional[Dict[str, Any]] = Field(
description="Configuration for the agent", default=None
)
verbose: bool = Field(
default=False, description="Verbose mode for the Agent Execution"
)
max_rpm: Optional[int] = Field(
default=None,
description="Maximum number of requests per minute for the agent execution to be respected.",
)
allow_delegation: bool = Field(
default=True, description="Allow delegation of tasks to agents"
)
tools: Optional[List[Any]] = Field(
default_factory=list, description="Tools at agents' disposal"
)
max_iter: Optional[int] = Field(
default=25, description="Maximum iterations for an agent to execute a task"
)
agent_executor: InstanceOf = Field(
default=None, description="An instance of the CrewAgentExecutor class."
)
llm: Any = Field(
default=None, description="Language model that will run the agent."
)
crew: Any = Field(default=None, description="Crew to which the agent belongs.")
i18n: I18N = Field(default=I18N(), description="Internationalization settings.")
cache_handler: InstanceOf[CacheHandler] = Field(
default=None, description="An instance of the CacheHandler class."
)
tools_handler: InstanceOf[ToolsHandler] = Field(
default=None, description="An instance of the ToolsHandler class."
)
_original_role: str | None = None
_original_goal: str | None = None
_original_backstory: str | None = None
_token_process: TokenProcess = TokenProcess()
def __init__(__pydantic_self__, **data):
config = data.pop("config", {})
super().__init__(**config, **data)
@model_validator(mode="after")
def set_config_attributes(self):
if self.config:
for key, value in self.config.items():
setattr(self, key, value)
return self
@field_validator("id", mode="before")
@classmethod
def _deny_user_set_id(cls, v: Optional[UUID4]) -> None:
if v:
raise PydanticCustomError(
"may_not_set_field", "This field is not to be set by the user.", {}
)
@model_validator(mode="after")
def set_attributes_based_on_config(self) -> "BaseAgent":
"""Set attributes based on the agent configuration."""
if self.config:
for key, value in self.config.items():
setattr(self, key, value)
return self
@model_validator(mode="after")
def set_private_attrs(self):
"""Set private attributes."""
self._logger = Logger(self.verbose)
if self.max_rpm and not self._rpm_controller:
self._rpm_controller = RPMController(
max_rpm=self.max_rpm, logger=self._logger
)
if not self._token_process:
self._token_process = TokenProcess()
return self
@abstractmethod
def execute_task(
self,
task: Any,
context: Optional[str] = None,
tools: Optional[List[Any]] = None,
) -> str:
pass
@abstractmethod
def create_agent_executor(self, tools=None) -> None:
pass
@abstractmethod
def _parse_tools(self, tools: List[Any]) -> List[Any]:
pass
@abstractmethod
def get_delegation_tools(self, agents: List["BaseAgent"]):
"""Set the task tools that init BaseAgenTools class."""
pass
@abstractmethod
def get_output_converter(
self, llm: Any, text: str, model: type[BaseModel] | None, instructions: str
):
"""Get the converter class for the agent to create json/pydantic outputs."""
pass
# TODO: HAVE LORENZE REVIEW THIS WITH OTHER AGENTS
@abstractmethod
def copy(self):
"""Create a copy of the agent."""
pass
def interpolate_inputs(self, inputs: Dict[str, Any]) -> None:
"""Interpolate inputs into the agent description and backstory."""
if self._original_role is None:
self._original_role = self.role
if self._original_goal is None:
self._original_goal = self.goal
if self._original_backstory is None:
self._original_backstory = self.backstory
if inputs:
self.role = self._original_role.format(**inputs)
self.goal = self._original_goal.format(**inputs)
self.backstory = self._original_backstory.format(**inputs)
def set_cache_handler(self, cache_handler: CacheHandler) -> None:
"""Set the cache handler for the agent.
Args:
cache_handler: An instance of the CacheHandler class.
"""
self.tools_handler = ToolsHandler()
if self.cache:
self.cache_handler = cache_handler
self.tools_handler.cache = cache_handler
self.create_agent_executor()
def increment_formatting_errors(self) -> None:
self.formatting_errors += 1
def set_rpm_controller(self, rpm_controller: RPMController) -> None:
"""Set the rpm controller for the agent.
Args:
rpm_controller: An instance of the RPMController class.
"""
if not self._rpm_controller:
self._rpm_controller = rpm_controller
self.create_agent_executor()

View File

@@ -0,0 +1,65 @@
import time
from crewai.memory.entity.entity_memory_item import EntityMemoryItem
from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
from crewai.memory.short_term.short_term_memory_item import ShortTermMemoryItem
from crewai.utilities.converter import ConverterError
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
class CrewAgentExecutorMixin:
def _should_force_answer(self) -> bool:
return (
self.iterations == self.force_answer_max_iterations
) and not self.have_forced_answer
def _create_short_term_memory(self, output) -> None:
if (
self.crew
and self.crew.memory
and "Action: Delegate work to coworker" not in output.log
):
memory = ShortTermMemoryItem(
data=output.log,
agent=self.crew_agent.role,
metadata={
"observation": self.task.description,
},
)
self.crew._short_term_memory.save(memory)
def _create_long_term_memory(self, output) -> None:
if self.crew and self.crew.memory:
ltm_agent = TaskEvaluator(self.crew_agent)
evaluation = ltm_agent.evaluate(self.task, output.log)
if isinstance(evaluation, ConverterError):
return
long_term_memory = LongTermMemoryItem(
task=self.task.description,
agent=self.crew_agent.role,
quality=evaluation.quality,
datetime=str(time.time()),
expected_output=self.task.expected_output,
metadata={
"suggestions": evaluation.suggestions,
"quality": evaluation.quality,
},
)
self.crew._long_term_memory.save(long_term_memory)
for entity in evaluation.entities:
entity_memory = EntityMemoryItem(
name=entity.name,
type=entity.type,
description=entity.description,
relationships="\n".join([f"- {r}" for r in entity.relationships]),
)
self.crew._entity_memory.save(entity_memory)
def _ask_human_input(self, final_answer: dict) -> str:
"""Get human input."""
return input(
self._i18n.slice("getting_input").format(final_answer=final_answer)
)

View File

@@ -0,0 +1,81 @@
from abc import ABC, abstractmethod
from typing import List, Optional, Union
from pydantic import BaseModel, Field
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.task import Task
from crewai.utilities import I18N
class BaseAgentTools(BaseModel, ABC):
"""Default tools around agent delegation"""
agents: List[BaseAgent] = Field(description="List of agents in this crew.")
i18n: I18N = Field(default=I18N(), description="Internationalization settings.")
@abstractmethod
def tools(self):
pass
def _get_coworker(self, coworker: Optional[str], **kwargs) -> Optional[str]:
coworker = coworker or kwargs.get("co_worker") or kwargs.get("coworker")
if coworker:
is_list = coworker.startswith("[") and coworker.endswith("]")
if is_list:
coworker = coworker[1:-1].split(",")[0]
return coworker
def delegate_work(
self, task: str, context: str, coworker: Optional[str] = None, **kwargs
):
"""Useful to delegate a specific task to a coworker passing all necessary context and names."""
coworker = self._get_coworker(coworker, **kwargs)
return self._execute(coworker, task, context)
def ask_question(
self, question: str, context: str, coworker: Optional[str] = None, **kwargs
):
"""Useful to ask a question, opinion or take from a coworker passing all necessary context and names."""
coworker = self._get_coworker(coworker, **kwargs)
return self._execute(coworker, question, context)
def _execute(self, agent: Union[str, None], task: str, context: Union[str, None]):
"""Execute the command."""
try:
if agent is None:
agent = ""
# It is important to remove the quotes from the agent name.
# The reason we have to do this is because less-powerful LLM's
# have difficulty producing valid JSON.
# As a result, we end up with invalid JSON that is truncated like this:
# {"task": "....", "coworker": "....
# when it should look like this:
# {"task": "....", "coworker": "...."}
agent_name = agent.casefold().replace('"', "").replace("\n", "")
agent = [
available_agent
for available_agent in self.agents
if available_agent.role.casefold().replace("\n", "") == agent_name
]
except Exception as _:
return self.i18n.errors("agent_tool_unexsiting_coworker").format(
coworkers="\n".join(
[f"- {agent.role.casefold()}" for agent in self.agents]
)
)
if not agent:
return self.i18n.errors("agent_tool_unexsiting_coworker").format(
coworkers="\n".join(
[f"- {agent.role.casefold()}" for agent in self.agents]
)
)
agent = agent[0]
task = Task(
description=task,
agent=agent,
expected_output="Your best answer to your coworker asking you this, accounting for the context shared.",
)
return agent.execute_task(task, context)

View File

@@ -0,0 +1,48 @@
from abc import ABC, abstractmethod
from typing import Any, Optional
from pydantic import BaseModel, Field, PrivateAttr
class OutputConverter(BaseModel, ABC):
"""
Abstract base class for converting task results into structured formats.
This class provides a framework for converting unstructured text into
either Pydantic models or JSON, tailored for specific agent requirements.
It uses a language model to interpret and structure the input text based
on given instructions.
Attributes:
text (str): The input text to be converted.
llm (Any): The language model used for conversion.
model (Any): The target model for structuring the output.
instructions (str): Specific instructions for the conversion process.
max_attempts (int): Maximum number of conversion attempts (default: 3).
"""
_is_gpt: bool = PrivateAttr(default=True)
text: str = Field(description="Text to be converted.")
llm: Any = Field(description="The language model to be used to convert the text.")
model: Any = Field(description="The model to be used to convert the text.")
instructions: str = Field(description="Conversion instructions to the LLM.")
max_attemps: Optional[int] = Field(
description="Max number of attemps to try to get the output formated.",
default=3,
)
@abstractmethod
def to_pydantic(self, current_attempt=1):
"""Convert text to pydantic."""
pass
@abstractmethod
def to_json(self, current_attempt=1):
"""Convert text to json."""
pass
@abstractmethod
def _is_gpt(self, llm):
"""Return if llm provided is of gpt from openai."""
pass

View File

@@ -0,0 +1,27 @@
from typing import Any, Dict
class TokenProcess:
total_tokens: int = 0
prompt_tokens: int = 0
completion_tokens: int = 0
successful_requests: int = 0
def sum_prompt_tokens(self, tokens: int):
self.prompt_tokens = self.prompt_tokens + tokens
self.total_tokens = self.total_tokens + tokens
def sum_completion_tokens(self, tokens: int):
self.completion_tokens = self.completion_tokens + tokens
self.total_tokens = self.total_tokens + tokens
def sum_successful_requests(self, requests: int):
self.successful_requests = self.successful_requests + requests
def get_summary(self) -> Dict[str, Any]:
return {
"total_tokens": self.total_tokens,
"prompt_tokens": self.prompt_tokens,
"completion_tokens": self.completion_tokens,
"successful_requests": self.successful_requests,
}

View File

@@ -7,22 +7,20 @@ from langchain.agents.agent import ExceptionTool
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain_core.agents import AgentAction, AgentFinish, AgentStep
from langchain_core.exceptions import OutputParserException
from langchain_core.pydantic_v1 import root_validator
from langchain_core.tools import BaseTool
from langchain_core.utils.input import get_color_mapping
from pydantic import InstanceOf
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
from crewai.agents.tools_handler import ToolsHandler
from crewai.memory.entity.entity_memory_item import EntityMemoryItem
from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
from crewai.memory.short_term.short_term_memory_item import ShortTermMemoryItem
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
from crewai.utilities import I18N
from crewai.utilities.converter import ConverterError
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
from crewai.utilities.constants import TRAINING_DATA_FILE
from crewai.utilities.training_handler import CrewTrainingHandler
class CrewAgentExecutor(AgentExecutor):
class CrewAgentExecutor(AgentExecutor, CrewAgentExecutorMixin):
_i18n: I18N = I18N()
should_ask_for_human_input: bool = False
llm: Any = None
@@ -44,61 +42,6 @@ class CrewAgentExecutor(AgentExecutor):
prompt_template: Optional[str] = None
response_template: Optional[str] = None
@root_validator()
def set_force_answer_max_iterations(cls, values: Dict) -> Dict:
values["force_answer_max_iterations"] = values["max_iterations"] - 2
return values
def _should_force_answer(self) -> bool:
return (
self.iterations == self.force_answer_max_iterations
) and not self.have_forced_answer
def _create_short_term_memory(self, output) -> None:
if (
self.crew
and self.crew.memory
and "Action: Delegate work to coworker" not in output.log
):
memory = ShortTermMemoryItem(
data=output.log,
agent=self.crew_agent.role,
metadata={
"observation": self.task.description,
},
)
self.crew._short_term_memory.save(memory)
def _create_long_term_memory(self, output) -> None:
if self.crew and self.crew.memory:
ltm_agent = TaskEvaluator(self.crew_agent)
evaluation = ltm_agent.evaluate(self.task, output.log)
if isinstance(evaluation, ConverterError):
return
long_term_memory = LongTermMemoryItem(
task=self.task.description,
agent=self.crew_agent.role,
quality=evaluation.quality,
datetime=str(time.time()),
expected_output=self.task.expected_output,
metadata={
"suggestions": evaluation.suggestions,
"quality": evaluation.quality,
},
)
self.crew._long_term_memory.save(long_term_memory)
for entity in evaluation.entities:
entity_memory = EntityMemoryItem(
name=entity.name,
type=entity.type,
description=entity.description,
relationships="\n".join([f"- {r}" for r in entity.relationships]),
)
self.crew._entity_memory.save(entity_memory)
def _call(
self,
inputs: Dict[str, str],
@@ -246,12 +189,17 @@ class CrewAgentExecutor(AgentExecutor):
# If the tool chosen is the finishing tool, then we end and return.
if isinstance(output, AgentFinish):
if self.should_ask_for_human_input:
human_feedback = self._ask_human_input(output.return_values["output"])
if self.crew and self.crew._train:
self._handle_crew_training_output(output, human_feedback)
# Making sure we only ask for it once, so disabling for the next thought loop
self.should_ask_for_human_input = False
human_feedback = self._ask_human_input(output.return_values["output"])
action = AgentAction(
tool="Human Input", tool_input=human_feedback, log=output.log
)
yield AgentStep(
action=action,
observation=self._i18n.slice("human_feedback").format(
@@ -261,6 +209,9 @@ class CrewAgentExecutor(AgentExecutor):
return
else:
if self.crew and self.crew._train:
self._handle_crew_training_output(output)
yield output
return
@@ -300,8 +251,30 @@ class CrewAgentExecutor(AgentExecutor):
)
yield AgentStep(action=agent_action, observation=observation)
def _ask_human_input(self, final_answer: dict) -> str:
"""Get human input."""
return input(
self._i18n.slice("getting_input").format(final_answer=final_answer)
)
def _handle_crew_training_output(
self, output: AgentFinish, human_feedback: str | None = None
) -> None:
"""Function to handle the process of the training data."""
agent_id = str(self.crew_agent.id)
if (
CrewTrainingHandler(TRAINING_DATA_FILE).load()
and not self.should_ask_for_human_input
):
training_data = CrewTrainingHandler(TRAINING_DATA_FILE).load()
if training_data.get(agent_id):
training_data[agent_id][self.crew._train_iteration][
"improved_output"
] = output.return_values["output"]
CrewTrainingHandler(TRAINING_DATA_FILE).save(training_data)
if self.should_ask_for_human_input and human_feedback is not None:
training_data = {
"initial_output": output.return_values["output"],
"human_feedback": human_feedback,
"agent": agent_id,
"agent_role": self.crew_agent.role,
}
CrewTrainingHandler(TRAINING_DATA_FILE).append(
self.crew._train_iteration, agent_id, training_data
)

View File

@@ -15,8 +15,9 @@ def train():
"""
Train the crew for a given number of iterations.
"""
inputs = {"topic": "AI LLMs"}
try:
{{crew_name}}Crew().crew().train(n_iterations=int(sys.argv[1]))
{{crew_name}}Crew().crew().train(n_iterations=int(sys.argv[1]), inputs=inputs)
except Exception as e:
raise Exception(f"An error occurred while training the crew: {e}")

View File

@@ -6,7 +6,7 @@ authors = ["Your Name <you@example.com>"]
[tool.poetry.dependencies]
python = ">=3.10,<=3.13"
crewai = { extras = ["tools"], version = "^0.32.2" }
crewai = { extras = ["tools"], version = "^0.35.4" }
[tool.poetry.scripts]
{{folder_name}} = "{{folder_name}}.main:run"

View File

@@ -5,19 +5,20 @@ from typing import Any, Dict, List, Optional, Union
from langchain_core.callbacks import BaseCallbackHandler
from pydantic import (
UUID4,
BaseModel,
ConfigDict,
Field,
InstanceOf,
Json,
PrivateAttr,
field_validator,
model_validator,
UUID4,
BaseModel,
ConfigDict,
Field,
InstanceOf,
Json,
PrivateAttr,
field_validator,
model_validator,
)
from pydantic_core import PydanticCustomError
from crewai.agent import Agent
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.agents.cache import CacheHandler
from crewai.memory.entity.entity_memory import EntityMemory
from crewai.memory.long_term.long_term_memory import LongTermMemory
@@ -27,6 +28,8 @@ from crewai.task import Task
from crewai.telemetry import Telemetry
from crewai.tools.agent_tools import AgentTools
from crewai.utilities import I18N, FileHandler, Logger, RPMController
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
from crewai.utilities.training_handler import CrewTrainingHandler
class Crew(BaseModel):
@@ -63,11 +66,13 @@ class Crew(BaseModel):
_short_term_memory: Optional[InstanceOf[ShortTermMemory]] = PrivateAttr()
_long_term_memory: Optional[InstanceOf[LongTermMemory]] = PrivateAttr()
_entity_memory: Optional[InstanceOf[EntityMemory]] = PrivateAttr()
_train: Optional[bool] = PrivateAttr(default=False)
_train_iteration: Optional[int] = PrivateAttr()
cache: bool = Field(default=False)
model_config = ConfigDict(arbitrary_types_allowed=True)
tasks: List[Task] = Field(default_factory=list)
agents: List[Agent] = Field(default_factory=list)
agents: List[BaseAgent] = Field(default_factory=list)
process: Process = Field(default=Process.sequential)
verbose: Union[int, bool] = Field(default=0)
memory: bool = Field(
@@ -89,7 +94,7 @@ class Crew(BaseModel):
manager_llm: Optional[Any] = Field(
description="Language model that will run the agent.", default=None
)
manager_agent: Optional[Any] = Field(
manager_agent: Optional[BaseAgent] = Field(
description="Custom agent that will be used as manager.", default=None
)
manager_callbacks: Optional[List[InstanceOf[BaseCallbackHandler]]] = Field(
@@ -242,17 +247,41 @@ class Crew(BaseModel):
del task_config["agent"]
return Task(**task_config, agent=task_agent)
def _setup_for_training(self) -> None:
"""Sets up the crew for training."""
self._train = True
for task in self.tasks:
task.human_input = True
for agent in self.agents:
agent.allow_delegation = False
def train(self, n_iterations: int, inputs: Optional[Dict[str, Any]] = {}) -> None:
"""Trains the crew for a given number of iterations."""
self._setup_for_training()
for n_iteration in range(n_iterations):
self._train_iteration = n_iteration
self.kickoff(inputs=inputs)
training_data = CrewTrainingHandler("training_data.pkl").load()
for agent in self.agents:
result = TaskEvaluator(agent).evaluate_training_data(
training_data=training_data, agent_id=str(agent.id)
)
CrewTrainingHandler("trained_agents_data.pkl").save_trained_data(
agent_id=str(agent.role), trained_data=result.model_dump()
)
def kickoff(
self,
inputs: Optional[Dict[str, Any]] = {},
) -> Union[str, Dict[str, Any]]:
"""Starts the crew to work on its assigned tasks."""
print(f"CREW ID {self.id} - KICKING OFF CREW")
print(
f"CREW ID {self.id} - callbacks",
[agent.llm.callbacks for agent in self.agents],
)
self._execution_span = self._telemetry.crew_execution_span(self)
self._execution_span = self._telemetry.crew_execution_span(self, inputs)
# type: ignore # Argument 1 to "_interpolate_inputs" of "Crew" has incompatible type "dict[str, Any] | None"; expected "dict[str, Any]"
self._interpolate_inputs(inputs)
self._set_tasks_callbacks()
@@ -260,12 +289,21 @@ class Crew(BaseModel):
i18n = I18N(prompt_file=self.prompt_file)
for agent in self.agents:
# type: ignore # Argument 1 to "_interpolate_inputs" of "Crew" has incompatible type "dict[str, Any] | None"; expected "dict[str, Any]"
agent.i18n = i18n
agent.crew = self
if not agent.function_calling_llm:
# type: ignore[attr-defined] # Argument 1 to "_interpolate_inputs" of "Crew" has incompatible type "dict[str, Any] | None"; expected "dict[str, Any]"
agent.crew = self # type: ignore[attr-defined]
# TODO: Create an AgentFunctionCalling protocol for future refactoring
if (
hasattr(agent, "function_calling_llm")
and not agent.function_calling_llm
):
agent.function_calling_llm = self.function_calling_llm
if not agent.step_callback:
if hasattr(agent, "allow_code_execution") and agent.allow_code_execution:
agent.tools += agent.get_code_execution_tools()
if hasattr(agent, "step_callback") and not agent.step_callback:
agent.step_callback = self.step_callback
agent.create_agent_executor()
@@ -283,10 +321,10 @@ class Crew(BaseModel):
raise NotImplementedError(
f"The process '{self.process}' is not implemented yet."
)
metrics = metrics + [
agent._token_process.get_summary() for agent in self.agents
]
self.usage_metrics = {
key: sum([m[key] for m in metrics if m is not None]) for key in metrics[0]
}
@@ -327,7 +365,6 @@ class Crew(BaseModel):
"""Asynchronous kickoff method to start the crew execution."""
return await asyncio.to_thread(self.kickoff, inputs)
# TODO: IF THERE ARE MULTIPLE INPUTS, THE USAGE METRICS FOR FIRST ONE COMES BACK AS 0.
async def kickoff_for_each_async(self, inputs: List[Dict]) -> List[Any]:
crew_copies = [self.copy() for _ in inputs]
@@ -356,28 +393,17 @@ class Crew(BaseModel):
return results
def train(self, n_iterations: int) -> None:
# TODO: Implement training
pass
def _run_sequential_process(self) -> Union[str, Dict[str, Any]]:
def _run_sequential_process(self) -> str:
"""Executes tasks sequentially and returns the final output."""
task_output = ""
total_token_usage = {
"total_tokens": 0,
"prompt_tokens": 0,
"completion_tokens": 0,
"successful_requests": 0,
}
for task in self.tasks:
print("TASK DESCRIPTION", task.description)
if task.agent.allow_delegation: # type: ignore # Item "None" of "Agent | None" has no attribute "allow_delegation"
agents_for_delegation = [
agent for agent in self.agents if agent != task.agent
]
if len(self.agents) > 1 and len(agents_for_delegation) > 0:
task.tools += AgentTools(agents=agents_for_delegation).tools()
task.tools += task.agent.get_delegation_tools(agents_for_delegation)
role = task.agent.role if task.agent is not None else "None"
self._logger.log("debug", f"== Working Agent: {role}", color="bold_purple")
@@ -389,7 +415,6 @@ class Crew(BaseModel):
self._file_handler.log(
agent=role, task=task.description, status="started"
)
output = task.execute(context=task_output)
if not task.async_execution:
@@ -401,18 +426,12 @@ class Crew(BaseModel):
if self.output_log_file:
self._file_handler.log(agent=role, task=task_output, status="completed")
for agent in self.agents:
print("INSPECTING AGENT", agent.role)
agent_token_usage = agent._token_process.get_summary()
print("AGENT TOKEN USAGE", agent_token_usage)
for key in total_token_usage:
total_token_usage[key] += agent_token_usage.get(key, 0)
self._finish_execution(task_output)
# type: ignore # Item "None" of "Agent | None" has no attribute "_token_process")
token_usage = self._calculate_usage_metrics()
# type: ignore # Incompatible return value type (got "tuple[str, Any]", expected "str")
return self._format_output(task_output, total_token_usage)
return self._format_output(task_output, token_usage)
def _run_hierarchical_process(self) -> Union[str, Dict[str, Any]]:
"""Creates and assigns a manager agent to make sure the crew completes the tasks."""
@@ -423,7 +442,7 @@ class Crew(BaseModel):
manager = self.manager_agent
if len(manager.tools) > 0:
raise Exception("Manager agent should not have tools")
manager.tools = AgentTools(agents=self.agents).tools()
manager.tools = self.manager_agent.get_delegation_tools(self.agents)
else:
manager = Agent(
role=i18n.retrieve("hierarchical_manager_agent", "role"),
@@ -431,10 +450,12 @@ class Crew(BaseModel):
backstory=i18n.retrieve("hierarchical_manager_agent", "backstory"),
tools=AgentTools(agents=self.agents).tools(),
llm=self.manager_llm,
verbose=True,
verbose=self.verbose,
)
self.manager_agent = manager
task_output = ""
for task in self.tasks:
self._logger.log("debug", f"Working Agent: {manager.role}")
self._logger.log("info", f"Starting Task: {task.description}")
@@ -449,19 +470,19 @@ class Crew(BaseModel):
)
self._logger.log("debug", f"[{manager.role}] Task output: {task_output}")
if self.output_log_file:
self._file_handler.log(
agent=manager.role, task=task_output, status="completed"
)
# TODO: GET TOKENS USAGE CALCULATED INCLUDING MANAGER
self._finish_execution(task_output)
# type: ignore # Incompatible return value type (got "tuple[str, Any]", expected "str")
manager_token_usage = manager._token_process.get_summary()
token_usage = self._calculate_usage_metrics()
return (
self._format_output(task_output, manager_token_usage),
manager_token_usage,
self._format_output(task_output, token_usage),
token_usage,
)
def copy(self):
@@ -511,17 +532,17 @@ class Crew(BaseModel):
for task in self.tasks
]
# type: ignore # "interpolate_inputs" of "Agent" does not return a value (it only ever returns None)
[agent.interpolate_inputs(inputs) for agent in self.agents]
for agent in self.agents:
agent.interpolate_inputs(inputs)
def _format_output(
self, output: str, token_usage: Optional[Dict[str, Any]]
self, output: str, token_usage: Optional[Dict[str, Any]] = None
) -> Union[str, Dict[str, Any]]:
"""
Formats the output of the crew execution.
If full_output is True, then returned data type will be a dictionary else returned outputs are string
"""
print("token_usage passed to _format_output", token_usage)
if self.full_output:
return { # type: ignore # Incompatible return value type (got "dict[str, Sequence[str | TaskOutput | None]]", expected "str")
"final_output": output,
@@ -536,5 +557,38 @@ class Crew(BaseModel):
self._rpm_controller.stop_rpm_counter()
self._telemetry.end_crew(self, output)
def _calculate_usage_metrics(
self,
) -> Dict[str, int]:
total_usage_metrics = {
"total_tokens": 0,
"prompt_tokens": 0,
"completion_tokens": 0,
"successful_requests": 0,
}
for agent in self.agents:
if hasattr(agent, "_token_process"):
token_sum = agent._token_process.get_summary()
total_usage_metrics = {
key: total_usage_metrics[key] + token_sum[key]
for key in total_usage_metrics
}
if self.manager_agent:
token_sum = self.manager_agent._token_process.get_summary()
total_usage_metrics = {
key: total_usage_metrics[key] + token_sum[key]
for key in total_usage_metrics
}
return total_usage_metrics
def __repr__(self):
return f"Crew(id={self.id}, process={self.process}, number_of_agents={len(self.agents)}, number_of_tasks={len(self.tasks)})"
def aggregate_token_usage(self, token_usage_list: List[Dict[str, Any]]):
return {
key: sum([m[key] for m in token_usage_list if m is not None])
for key in token_usage_list[0]
}

View File

@@ -3,17 +3,22 @@ import re
import threading
import uuid
from copy import copy
from typing import Any, Dict, List, Optional, Type
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Type, Union
from langchain_openai import ChatOpenAI
from opentelemetry.trace import Span
from pydantic import UUID4, BaseModel, Field, field_validator, model_validator
from pydantic_core import PydanticCustomError
from crewai.agent import Agent
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.tasks.task_output import TaskOutput
from crewai.utilities import I18N, Converter, ConverterError, Printer
from crewai.telemetry.telemetry import Telemetry
from crewai.utilities import I18N, ConverterError, Printer
from crewai.utilities.pydantic_schema_parser import PydanticSchemaParser
if TYPE_CHECKING:
from crewai.agents import Agent
class Task(BaseModel):
"""Class that represents a task to be executed.
@@ -42,7 +47,6 @@ class Task(BaseModel):
tools_errors: int = 0
delegations: int = 0
i18n: I18N = I18N()
thread: Optional[threading.Thread] = None
prompt_context: Optional[str] = None
description: str = Field(description="Description of the actual task.")
expected_output: str = Field(
@@ -55,7 +59,7 @@ class Task(BaseModel):
callback: Optional[Any] = Field(
description="Callback to be executed after the task is completed.", default=None
)
agent: Optional[Agent] = Field(
agent: Optional[BaseAgent] = Field(
description="Agent responsible for execution the task.", default=None
)
context: Optional[List["Task"]] = Field(
@@ -95,8 +99,11 @@ class Task(BaseModel):
default=False,
)
_telemetry: Telemetry
_execution_span: Span | None = None
_original_description: str | None = None
_original_expected_output: str | None = None
_thread: threading.Thread | None = None
def __init__(__pydantic_self__, **data):
config = data.pop("config", {})
@@ -118,6 +125,12 @@ class Task(BaseModel):
return value[1:]
return value
@model_validator(mode="after")
def set_private_attrs(self) -> "Task":
"""Set private attributes."""
self._telemetry = Telemetry()
return self
@model_validator(mode="after")
def set_attributes_based_on_config(self) -> "Task":
"""Set attributes based on the agent configuration."""
@@ -145,9 +158,21 @@ class Task(BaseModel):
)
return self
def wait_for_completion(self) -> str | BaseModel:
"""Wait for asynchronous task completion and return the output."""
assert self.async_execution, "Task is not set to be executed asynchronously."
if self._thread:
self._thread.join()
self._thread = None
assert self.output, "Task output is not set."
return self.output.exported_output
def execute( # type: ignore # Missing return statement
self,
agent: Agent | None = None,
agent: BaseAgent | None = None,
context: Optional[str] = None,
tools: Optional[List[Any]] = None,
) -> str:
@@ -157,6 +182,8 @@ class Task(BaseModel):
Output of the task.
"""
self._execution_span = self._telemetry.task_started(self)
agent = agent or self.agent
if not agent:
raise Exception(
@@ -168,8 +195,8 @@ class Task(BaseModel):
context = []
for task in self.context:
if task.async_execution:
task.thread.join() # type: ignore # Item "None" of "Thread | None" has no attribute "join"
if task and task.output:
task.wait_for_completion()
if task.output:
# type: ignore # Item "str" of "str | None" has no attribute "append"
context.append(task.output.raw_output)
# type: ignore # Argument 1 to "join" of "str" has incompatible type "str | None"; expected "Iterable[str]"
@@ -179,10 +206,10 @@ class Task(BaseModel):
tools = tools or self.tools
if self.async_execution:
self.thread = threading.Thread(
self._thread = threading.Thread(
target=self._execute, args=(agent, self, context, tools)
)
self.thread.start()
self._thread.start()
else:
result = self._execute(
task=self,
@@ -192,15 +219,15 @@ class Task(BaseModel):
)
return result
def _execute(self, agent: Agent, task, context, tools):
def _execute(self, agent: "Agent", task, context, tools):
result = agent.execute_task(
task=task,
context=context,
tools=tools,
)
exported_output = self._export_output(result)
# type: ignore # the responses are usually str but need to figure out a more elegant solution here
self.output = TaskOutput(
description=self.description,
exported_output=exported_output,
@@ -211,6 +238,10 @@ class Task(BaseModel):
if self.callback:
self.callback(self.output)
if self._execution_span:
self._telemetry.task_ended(self._execution_span, self)
self._execution_span = None
return exported_output
def prompt(self) -> str:
@@ -246,7 +277,7 @@ class Task(BaseModel):
"""Increment the delegations counter."""
self.delegations += 1
def copy(self, agents: Optional[List[Agent]] = None) -> "Task":
def copy(self, agents: Optional[List["Agent"]] = None) -> "Task":
"""Create a deep copy of the Task."""
exclude = {
"id",
@@ -262,15 +293,11 @@ class Task(BaseModel):
[task.copy() for task in self.context] if self.context else None
)
# TODO: Make sure this clone approach is correct.
def get_agent_by_role(role: str) -> Agent | None:
def get_agent_by_role(role: str) -> Union["Agent", None]:
return next((agent for agent in agents if agent.role == role), None)
cloned_agent = get_agent_by_role(self.agent.role) if self.agent else None
# cloned_agent = self.agent.copy() if self.agent else None
print("TOOLS BEFORE COPY", self.tools)
cloned_tools = copy(self.tools) if self.tools else []
print("TOOLS AFTER COPY", cloned_tools)
copied_task = Task(
**copied_data,
@@ -311,14 +338,13 @@ class Task(BaseModel):
pass
# type: ignore # Item "None" of "Agent | None" has no attribute "function_calling_llm"
llm = self.agent.function_calling_llm or self.agent.llm
llm = getattr(self.agent, "function_calling_llm", None) or self.agent.llm
if not self._is_gpt(llm):
# type: ignore # Argument "model" to "PydanticSchemaParser" has incompatible type "type[BaseModel] | None"; expected "type[BaseModel]"
model_schema = PydanticSchemaParser(model=model).get_schema()
instructions = f"{instructions}\n\nThe json should have the following structure, with the following keys:\n{model_schema}"
converter = Converter(
converter = self.agent.get_output_converter(
llm=llm, text=result, model=model, instructions=instructions
)

View File

@@ -1,8 +1,10 @@
from __future__ import annotations
import asyncio
import json
import os
import platform
from typing import Any
from typing import TYPE_CHECKING, Any
import pkg_resources
from opentelemetry import trace
@@ -10,7 +12,11 @@ from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExport
from opentelemetry.sdk.resources import SERVICE_NAME, Resource
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.trace import Status, StatusCode
from opentelemetry.trace import Span, Status, StatusCode
if TYPE_CHECKING:
from crewai.crew import Crew
from crewai.task import Task
class Telemetry:
@@ -88,9 +94,6 @@ class Telemetry:
self._add_attribute(span, "python_version", platform.python_version())
self._add_attribute(span, "crew_id", str(crew.id))
self._add_attribute(span, "crew_process", crew.process)
self._add_attribute(
span, "crew_language", crew.prompt_file if crew.i18n else "None"
)
self._add_attribute(span, "crew_memory", crew.memory)
self._add_attribute(span, "crew_number_of_tasks", len(crew.tasks))
self._add_attribute(span, "crew_number_of_agents", len(crew.agents))
@@ -102,6 +105,8 @@ class Telemetry:
{
"id": str(agent.id),
"role": agent.role,
"goal": agent.goal,
"backstory": agent.backstory,
"verbose?": agent.verbose,
"max_iter": agent.max_iter,
"max_rpm": agent.max_rpm,
@@ -123,8 +128,16 @@ class Telemetry:
[
{
"id": str(task.id),
"description": task.description,
"expected_output": task.expected_output,
"async_execution?": task.async_execution,
"human_input?": task.human_input,
"agent_role": task.agent.role if task.agent else "None",
"context": (
[task.description for task in task.context]
if task.context
else None
),
"tools_names": [
tool.name.casefold() for tool in task.tools
],
@@ -143,6 +156,38 @@ class Telemetry:
except Exception:
pass
def task_started(self, task: Task) -> Span | None:
"""Records task started in a crew."""
if self.ready:
try:
tracer = trace.get_tracer("crewai.telemetry")
span = tracer.start_span("Task Execution")
self._add_attribute(span, "task_id", str(task.id))
self._add_attribute(span, "formatted_description", task.description)
self._add_attribute(
span, "formatted_expected_output", task.expected_output
)
return span
except Exception:
pass
return None
def task_ended(self, span: Span, task: Task):
"""Records task execution in a crew."""
if self.ready:
try:
self._add_attribute(
span, "output", task.output.raw_output if task.output else ""
)
span.set_status(Status(StatusCode.OK))
span.end()
except Exception:
pass
def tool_repeated_usage(self, llm: Any, tool_name: str, attempts: int):
"""Records the repeated usage 'error' of a tool by an agent."""
if self.ready:
@@ -207,7 +252,7 @@ class Telemetry:
except Exception:
pass
def crew_execution_span(self, crew):
def crew_execution_span(self, crew: Crew, inputs: dict[str, Any] | None):
"""Records the complete execution of a crew.
This is only collected if the user has opted-in to share the crew.
"""
@@ -221,6 +266,7 @@ class Telemetry:
pkg_resources.get_distribution("crewai").version,
)
self._add_attribute(span, "crew_id", str(crew.id))
self._add_attribute(span, "inputs", json.dumps(inputs))
self._add_attribute(
span,
"crew_agents",
@@ -238,7 +284,7 @@ class Telemetry:
"llm": json.dumps(self._safe_llm_attributes(agent.llm)),
"delegation_enabled?": agent.allow_delegation,
"tools_names": [
tool.name.casefold() for tool in agent.tools
tool.name.casefold() for tool in agent.tools or []
],
}
for agent in crew.agents
@@ -253,16 +299,17 @@ class Telemetry:
{
"id": str(task.id),
"description": task.description,
"expected_output": task.expected_output,
"async_execution?": task.async_execution,
"output": task.expected_output,
"human_input?": task.human_input,
"agent_role": task.agent.role if task.agent else "None",
"context": (
[task.description for task in task.context]
if task.context
else "None"
else None
),
"tools_names": [
tool.name.casefold() for tool in task.tools
tool.name.casefold() for tool in task.tools or []
],
}
for task in crew.tasks

View File

@@ -1,106 +1,25 @@
from typing import List, Union
from langchain.tools import StructuredTool
from pydantic import BaseModel, Field
from crewai.agent import Agent
from crewai.task import Task
from crewai.utilities import I18N
from crewai.agents.agent_builder.utilities.base_agent_tool import BaseAgentTools
class AgentTools(BaseModel):
class AgentTools(BaseAgentTools):
"""Default tools around agent delegation"""
agents: List[Agent] = Field(description="List of agents in this crew.")
i18n: I18N = Field(default=I18N(), description="Internationalization settings.")
def tools(self):
coworkers = f"[{', '.join([f'{agent.role}' for agent in self.agents])}]"
tools = [
StructuredTool.from_function(
func=self.delegate_work,
name="Delegate work to coworker",
description=self.i18n.tools("delegate_work").format(
coworkers=f"[{', '.join([f'{agent.role}' for agent in self.agents])}]"
coworkers=coworkers
),
),
StructuredTool.from_function(
func=self.ask_question,
name="Ask question to coworker",
description=self.i18n.tools("ask_question").format(
coworkers=f"[{', '.join([f'{agent.role}' for agent in self.agents])}]"
),
description=self.i18n.tools("ask_question").format(coworkers=coworkers),
),
]
return tools
def delegate_work(
self,
task: str,
context: Union[str, None] = None,
coworker: Union[str, None] = None,
**kwargs,
):
"""Useful to delegate a specific task to a coworker passing all necessary context and names."""
coworker = coworker or kwargs.get("co_worker") or kwargs.get("coworker")
if coworker:
is_list = coworker.startswith("[") and coworker.endswith("]")
if is_list:
coworker = coworker[1:-1].split(",")[0]
return self._execute(coworker, task, context)
def ask_question(
self,
question: str,
context: Union[str, None] = None,
coworker: Union[str, None] = None,
**kwargs,
):
"""Useful to ask a question, opinion or take from a coworker passing all necessary context and names."""
coworker = coworker or kwargs.get("co_worker") or kwargs.get("coworker")
if coworker:
is_list = coworker.startswith("[") and coworker.endswith("]")
if is_list:
coworker = coworker[1:-1].split(",")[0]
return self._execute(coworker, question, context)
def _execute(self, agent: Union[str, None], task: str, context: Union[str, None]):
"""Execute the command."""
try:
if agent is None:
agent = ""
# It is important to remove the quotes from the agent name.
# The reason we have to do this is because less-powerful LLM's
# have difficulty producing valid JSON.
# As a result, we end up with invalid JSON that is truncated like this:
# {"task": "....", "coworker": "....
# when it should look like this:
# {"task": "....", "coworker": "...."}
agent_name = agent.casefold().replace('"', "").replace("\n", "")
agent = [
available_agent
for available_agent in self.agents
if available_agent.role.casefold().replace("\n", "") == agent_name
]
except Exception as _:
return self.i18n.errors("agent_tool_unexsiting_coworker").format(
coworkers="\n".join(
[f"- {agent.role.casefold()}" for agent in self.agents]
)
)
if not agent:
return self.i18n.errors("agent_tool_unexsiting_coworker").format(
coworkers="\n".join(
[f"- {agent.role.casefold()}" for agent in self.agents]
)
)
agent = agent[0]
task = Task(
description=task,
agent=agent,
expected_output="Your best answer to your coworker asking you this, accounting for the context shared.",
)
return agent.execute_task(task, context)

View File

@@ -98,7 +98,7 @@ class ToolUsage:
tool_string: str,
tool: BaseTool,
calling: Union[ToolCalling, InstructorToolCalling],
) -> None: # TODO: Fix this return type
) -> str: # TODO: Fix this return type --> finecwg : I updated return type to str
if self._check_tool_repeated_usage(calling=calling): # type: ignore # _check_tool_repeated_usage of "ToolUsage" does not return a value (it only ever returns None)
try:
result = self._i18n.errors("task_repeated_usage").format(
@@ -123,7 +123,7 @@ class ToolUsage:
tool=calling.tool_name, input=calling.arguments
)
if not result:
if result is None: #! finecwg: if not result --> if result is None
try:
if calling.tool_name in [
"Delegate work to coworker",

View File

@@ -1,9 +1,22 @@
from .converter import Converter, ConverterError
from .file_handler import FileHandler
from .i18n import I18N
from .instructor import Instructor
from .logger import Logger
from .parser import YamlParser
from .printer import Printer
from .prompts import Prompts
from .rpm_controller import RPMController
from .fileHandler import FileHandler
from .parser import YamlParser
__all__ = [
"Converter",
"ConverterError",
"FileHandler",
"I18N",
"Instructor",
"Logger",
"Printer",
"Prompts",
"RPMController",
"YamlParser",
]

View File

@@ -0,0 +1,2 @@
TRAINING_DATA_FILE = "training_data.pkl"
TRAINED_AGENTS_DATA_FILE = "trained_agents_data.pkl"

View File

@@ -1,9 +1,11 @@
import json
from typing import Any, Optional
from langchain.schema import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field, PrivateAttr, model_validator
from pydantic import model_validator
from crewai.agents.agent_builder.utilities.base_output_converter_base import (
OutputConverter,
)
class ConverterError(Exception):
@@ -14,19 +16,9 @@ class ConverterError(Exception):
self.message = message
class Converter(BaseModel):
class Converter(OutputConverter):
"""Class that converts text into either pydantic or json."""
_is_gpt: bool = PrivateAttr(default=True)
text: str = Field(description="Text to be converted.")
llm: Any = Field(description="The language model to be used to convert the text.")
model: Any = Field(description="The model to be used to convert the text.")
instructions: str = Field(description="Conversion instructions to the LLM.")
max_attemps: Optional[int] = Field(
description="Max number of attemps to try to get the output formated.",
default=3,
)
@model_validator(mode="after")
def check_llm_provider(self):
if not self._is_gpt(self.llm):

View File

@@ -26,6 +26,18 @@ class TaskEvaluation(BaseModel):
)
class TrainingTaskEvaluation(BaseModel):
suggestions: List[str] = Field(
description="Based on the Human Feedbacks and the comparison between Initial Outputs and Improved outputs provide action items based on human_feedback for future tasks."
)
quality: float = Field(
description="A score from 0 to 10 evaluating on completion, quality, and overall performance from the improved output to the initial output based on the human feedback."
)
final_summary: str = Field(
description="A step by step action items to improve the next Agent based on the human-feedback and improved output."
)
class TaskEvaluator:
def __init__(self, original_agent):
self.llm = original_agent.llm
@@ -59,3 +71,49 @@ class TaskEvaluator:
def _is_gpt(self, llm) -> bool:
return isinstance(llm, ChatOpenAI) and llm.openai_api_base is None
def evaluate_training_data(
self, training_data: dict, agent_id: str
) -> TrainingTaskEvaluation:
"""
Evaluate the training data based on the llm output, human feedback, and improved output.
Parameters:
- training_data (dict): The training data to be evaluated.
- agent_id (str): The ID of the agent.
"""
output_training_data = training_data[agent_id]
final_aggregated_data = ""
for _, data in output_training_data.items():
final_aggregated_data += (
f"Initial Output:\n{data['initial_output']}\n\n"
f"Human Feedback:\n{data['human_feedback']}\n\n"
f"Improved Output:\n{data['improved_output']}\n\n"
)
evaluation_query = (
"Assess the quality of the training data based on the llm output, human feedback , and llm output improved result.\n\n"
f"{final_aggregated_data}"
"Please provide:\n"
"- Based on the Human Feedbacks and the comparison between Initial Outputs and Improved outputs provide action items based on human_feedback for future tasks\n"
"- A score from 0 to 10 evaluating on completion, quality, and overall performance from the improved output to the initial output based on the human feedback\n"
)
instructions = "I'm gonna convert this raw text into valid JSON."
if not self._is_gpt(self.llm):
model_schema = PydanticSchemaParser(
model=TrainingTaskEvaluation
).get_schema()
instructions = f"{instructions}\n\nThe json should have the following structure, with the following keys:\n{model_schema}"
converter = Converter(
llm=self.llm,
text=evaluation_query,
model=TrainingTaskEvaluation,
instructions=instructions,
)
pydantic_result = converter.to_pydantic()
return pydantic_result

View File

@@ -1,20 +0,0 @@
import os
from datetime import datetime
class FileHandler:
"""take care of file operations, currently it only logs messages to a file"""
def __init__(self, file_path):
if isinstance(file_path, bool):
self._path = os.path.join(os.curdir, "logs.txt")
elif isinstance(file_path, str):
self._path = file_path
else:
raise ValueError("file_path must be either a boolean or a string.")
def log(self, **kwargs):
now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
message = f"{now}: ".join([f"{key}={value}" for key, value in kwargs.items()])
with open(self._path, "a", encoding = 'utf-8') as file:
file.write(message + "\n")

View File

@@ -0,0 +1,69 @@
import os
import pickle
from datetime import datetime
class FileHandler:
"""take care of file operations, currently it only logs messages to a file"""
def __init__(self, file_path):
if isinstance(file_path, bool):
self._path = os.path.join(os.curdir, "logs.txt")
elif isinstance(file_path, str):
self._path = file_path
else:
raise ValueError("file_path must be either a boolean or a string.")
def log(self, **kwargs):
now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
message = f"{now}: ".join([f"{key}={value}" for key, value in kwargs.items()])
with open(self._path, "a", encoding="utf-8") as file:
file.write(message + "\n")
class PickleHandler:
def __init__(self, file_name: str) -> None:
"""
Initialize the PickleHandler with the name of the file where data will be stored.
The file will be saved in the current directory.
Parameters:
- file_name (str): The name of the file for saving and loading data.
"""
self.file_path = os.path.join(os.getcwd(), file_name)
self._initialize_file()
def _initialize_file(self) -> None:
"""
Initialize the file with an empty dictionary if it does not exist or is empty.
"""
if not os.path.exists(self.file_path) or os.path.getsize(self.file_path) == 0:
self.save({}) # Save an empty dictionary to initialize the file
def save(self, data) -> None:
"""
Save the data to the specified file using pickle.
Parameters:
- data (object): The data to be saved.
"""
with open(self.file_path, "wb") as file:
pickle.dump(data, file)
def load(self) -> dict:
"""
Load the data from the specified file using pickle.
Returns:
- dict: The data loaded from the file.
"""
if not os.path.exists(self.file_path) or os.path.getsize(self.file_path) == 0:
return {} # Return an empty dictionary if the file does not exist or is empty
with open(self.file_path, "rb") as file:
try:
return pickle.load(file)
except EOFError:
return {} # Return an empty dictionary if the file is empty or corrupted
except Exception:
raise # Raise any other exceptions that occur during loading

View File

@@ -5,36 +5,10 @@ import tiktoken
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import LLMResult
class TokenProcess:
id = uuid.uuid4() # TODO: REMOVE THIS
total_tokens: int = 0
prompt_tokens: int = 0
completion_tokens: int = 0
successful_requests: int = 0
def sum_prompt_tokens(self, tokens: int):
self.prompt_tokens = self.prompt_tokens + tokens
self.total_tokens = self.total_tokens + tokens
def sum_completion_tokens(self, tokens: int):
self.completion_tokens = self.completion_tokens + tokens
self.total_tokens = self.total_tokens + tokens
def sum_successful_requests(self, requests: int):
self.successful_requests = self.successful_requests + requests
def get_summary(self) -> Dict[str, Any]:
return {
"total_tokens": self.total_tokens,
"prompt_tokens": self.prompt_tokens,
"completion_tokens": self.completion_tokens,
"successful_requests": self.successful_requests,
}
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
class TokenCalcHandler(BaseCallbackHandler):
id = uuid.uuid4() # TODO: REMOVE THIS
model_name: str = ""
token_cost_process: TokenProcess

View File

@@ -0,0 +1,31 @@
from crewai.utilities.file_handler import PickleHandler
class CrewTrainingHandler(PickleHandler):
def save_trained_data(self, agent_id: str, trained_data: dict) -> None:
"""
Save the trained data for a specific agent.
Parameters:
- agent_id (str): The ID of the agent.
- trained_data (dict): The trained data to be saved.
"""
data = self.load()
data[agent_id] = trained_data
self.save(data)
def append(self, train_iteration: int, agent_id: str, new_data) -> None:
"""
Append new data to the existing pickle file.
Parameters:
- new_data (object): The new data to be appended.
"""
data = self.load()
if agent_id in data:
data[agent_id][train_iteration] = new_data
else:
data[agent_id] = {train_iteration: new_data}
self.save(data)