mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-04 13:48:31 +00:00
feat: improvements on QdrantVectorSearchTool
* Implement improvements on QdrantVectorSearchTool - Allow search filters to be set at the constructor level - Fix issue that prevented multiple records from being returned * Implement improvements on QdrantVectorSearchTool - Allow search filters to be set at the constructor level - Fix issue that prevented multiple records from being returned --------- Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>
This commit is contained in:
@@ -1,80 +1,42 @@
|
||||
from collections.abc import Callable
|
||||
from __future__ import annotations
|
||||
|
||||
import importlib
|
||||
import json
|
||||
import os
|
||||
from collections.abc import Callable
|
||||
from typing import Any
|
||||
|
||||
|
||||
try:
|
||||
from qdrant_client import QdrantClient
|
||||
from qdrant_client.http.models import FieldCondition, Filter, MatchValue
|
||||
|
||||
QDRANT_AVAILABLE = True
|
||||
except ImportError:
|
||||
QDRANT_AVAILABLE = False
|
||||
QdrantClient = Any # type: ignore[assignment,misc] # type placeholder
|
||||
Filter = Any # type: ignore[assignment,misc]
|
||||
FieldCondition = Any # type: ignore[assignment,misc]
|
||||
MatchValue = Any # type: ignore[assignment,misc]
|
||||
|
||||
from crewai.tools import BaseTool, EnvVar
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
from pydantic import BaseModel, ConfigDict, Field, model_validator
|
||||
from pydantic.types import ImportString
|
||||
|
||||
|
||||
class QdrantToolSchema(BaseModel):
|
||||
"""Input for QdrantTool."""
|
||||
query: str = Field(..., description="Query to search in Qdrant DB.")
|
||||
filter_by: str | None = None
|
||||
filter_value: str | None = None
|
||||
|
||||
query: str = Field(
|
||||
...,
|
||||
description="The query to search retrieve relevant information from the Qdrant database. Pass only the query, not the question.",
|
||||
)
|
||||
filter_by: str | None = Field(
|
||||
default=None,
|
||||
description="Filter by properties. Pass only the properties, not the question.",
|
||||
)
|
||||
filter_value: str | None = Field(
|
||||
default=None,
|
||||
description="Filter by value. Pass only the value, not the question.",
|
||||
)
|
||||
|
||||
class QdrantConfig(BaseModel):
|
||||
"""All Qdrant connection and search settings."""
|
||||
|
||||
qdrant_url: str
|
||||
qdrant_api_key: str | None = None
|
||||
collection_name: str
|
||||
limit: int = 3
|
||||
score_threshold: float = 0.35
|
||||
filter_conditions: list[tuple[str, Any]] = Field(default_factory=list)
|
||||
|
||||
|
||||
class QdrantVectorSearchTool(BaseTool):
|
||||
"""Tool to query and filter results from a Qdrant database.
|
||||
|
||||
This tool enables vector similarity search on internal documents stored in Qdrant,
|
||||
with optional filtering capabilities.
|
||||
|
||||
Attributes:
|
||||
client: Configured QdrantClient instance
|
||||
collection_name: Name of the Qdrant collection to search
|
||||
limit: Maximum number of results to return
|
||||
score_threshold: Minimum similarity score threshold
|
||||
qdrant_url: Qdrant server URL
|
||||
qdrant_api_key: Authentication key for Qdrant
|
||||
"""
|
||||
"""Vector search tool for Qdrant."""
|
||||
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
client: QdrantClient = None # type: ignore[assignment]
|
||||
|
||||
# --- Metadata ---
|
||||
name: str = "QdrantVectorSearchTool"
|
||||
description: str = "A tool to search the Qdrant database for relevant information on internal documents."
|
||||
description: str = "Search Qdrant vector DB for relevant documents."
|
||||
args_schema: type[BaseModel] = QdrantToolSchema
|
||||
query: str | None = None
|
||||
filter_by: str | None = None
|
||||
filter_value: str | None = None
|
||||
collection_name: str | None = None
|
||||
limit: int | None = Field(default=3)
|
||||
score_threshold: float = Field(default=0.35)
|
||||
qdrant_url: str = Field(
|
||||
...,
|
||||
description="The URL of the Qdrant server",
|
||||
)
|
||||
qdrant_api_key: str | None = Field(
|
||||
default=None,
|
||||
description="The API key for the Qdrant server",
|
||||
)
|
||||
custom_embedding_fn: Callable | None = Field(
|
||||
default=None,
|
||||
description="A custom embedding function to use for vectorization. If not provided, the default model will be used.",
|
||||
)
|
||||
package_dependencies: list[str] = Field(default_factory=lambda: ["qdrant-client"])
|
||||
env_vars: list[EnvVar] = Field(
|
||||
default_factory=lambda: [
|
||||
@@ -83,107 +45,81 @@ class QdrantVectorSearchTool(BaseTool):
|
||||
)
|
||||
]
|
||||
)
|
||||
qdrant_config: QdrantConfig
|
||||
qdrant_package: ImportString[Any] = Field(
|
||||
default="qdrant_client",
|
||||
description="Base package path for Qdrant. Will dynamically import client and models.",
|
||||
)
|
||||
custom_embedding_fn: ImportString[Callable[[str], list[float]]] | None = Field(
|
||||
default=None,
|
||||
description="Optional embedding function or import path.",
|
||||
)
|
||||
client: Any | None = None
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
if QDRANT_AVAILABLE:
|
||||
self.client = QdrantClient(
|
||||
url=self.qdrant_url,
|
||||
api_key=self.qdrant_api_key if self.qdrant_api_key else None,
|
||||
@model_validator(mode="after")
|
||||
def _setup_qdrant(self) -> QdrantVectorSearchTool:
|
||||
# Import the qdrant_package if it's a string
|
||||
if isinstance(self.qdrant_package, str):
|
||||
self.qdrant_package = importlib.import_module(self.qdrant_package)
|
||||
|
||||
if not self.client:
|
||||
self.client = self.qdrant_package.QdrantClient(
|
||||
url=self.qdrant_config.qdrant_url,
|
||||
api_key=self.qdrant_config.qdrant_api_key or None,
|
||||
)
|
||||
else:
|
||||
import click
|
||||
|
||||
if click.confirm(
|
||||
"The 'qdrant-client' package is required to use the QdrantVectorSearchTool. "
|
||||
"Would you like to install it?"
|
||||
):
|
||||
import subprocess
|
||||
|
||||
subprocess.run(["uv", "add", "qdrant-client"], check=True) # noqa: S607
|
||||
else:
|
||||
raise ImportError(
|
||||
"The 'qdrant-client' package is required to use the QdrantVectorSearchTool. "
|
||||
"Please install it with: uv add qdrant-client"
|
||||
)
|
||||
return self
|
||||
|
||||
def _run(
|
||||
self,
|
||||
query: str,
|
||||
filter_by: str | None = None,
|
||||
filter_value: str | None = None,
|
||||
filter_value: Any | None = None,
|
||||
) -> str:
|
||||
"""Execute vector similarity search on Qdrant.
|
||||
"""Perform vector similarity search."""
|
||||
filter_ = self.qdrant_package.http.models.Filter
|
||||
field_condition = self.qdrant_package.http.models.FieldCondition
|
||||
match_value = self.qdrant_package.http.models.MatchValue
|
||||
conditions = self.qdrant_config.filter_conditions.copy()
|
||||
if filter_by and filter_value is not None:
|
||||
conditions.append((filter_by, filter_value))
|
||||
|
||||
Args:
|
||||
query: Search query to vectorize and match
|
||||
filter_by: Optional metadata field to filter on
|
||||
filter_value: Optional value to filter by
|
||||
|
||||
Returns:
|
||||
JSON string containing search results with metadata and scores
|
||||
|
||||
Raises:
|
||||
ImportError: If qdrant-client is not installed
|
||||
ValueError: If Qdrant credentials are missing
|
||||
"""
|
||||
if not self.qdrant_url:
|
||||
raise ValueError("QDRANT_URL is not set")
|
||||
|
||||
# Create filter if filter parameters are provided
|
||||
search_filter = None
|
||||
if filter_by and filter_value:
|
||||
search_filter = Filter(
|
||||
search_filter = (
|
||||
filter_(
|
||||
must=[
|
||||
FieldCondition(key=filter_by, match=MatchValue(value=filter_value))
|
||||
field_condition(key=k, match=match_value(value=v))
|
||||
for k, v in conditions
|
||||
]
|
||||
)
|
||||
|
||||
# Search in Qdrant using the built-in query method
|
||||
query_vector = (
|
||||
self._vectorize_query(query, embedding_model="text-embedding-3-large")
|
||||
if not self.custom_embedding_fn
|
||||
else self.custom_embedding_fn(query)
|
||||
if conditions
|
||||
else None
|
||||
)
|
||||
search_results = self.client.query_points(
|
||||
collection_name=self.collection_name, # type: ignore[arg-type]
|
||||
query_vector = (
|
||||
self.custom_embedding_fn(query)
|
||||
if self.custom_embedding_fn
|
||||
else (
|
||||
lambda: __import__("openai")
|
||||
.Client(api_key=os.getenv("OPENAI_API_KEY"))
|
||||
.embeddings.create(input=[query], model="text-embedding-3-large")
|
||||
.data[0]
|
||||
.embedding
|
||||
)()
|
||||
)
|
||||
results = self.client.query_points(
|
||||
collection_name=self.qdrant_config.collection_name,
|
||||
query=query_vector,
|
||||
query_filter=search_filter,
|
||||
limit=self.limit, # type: ignore[arg-type]
|
||||
score_threshold=self.score_threshold,
|
||||
limit=self.qdrant_config.limit,
|
||||
score_threshold=self.qdrant_config.score_threshold,
|
||||
)
|
||||
|
||||
# Format results similar to storage implementation
|
||||
results = []
|
||||
# Extract the list of ScoredPoint objects from the tuple
|
||||
for point in search_results:
|
||||
result = {
|
||||
"metadata": point[1][0].payload.get("metadata", {}),
|
||||
"context": point[1][0].payload.get("text", ""),
|
||||
"distance": point[1][0].score,
|
||||
}
|
||||
results.append(result)
|
||||
|
||||
return json.dumps(results, indent=2)
|
||||
|
||||
def _vectorize_query(self, query: str, embedding_model: str) -> list[float]:
|
||||
"""Default vectorization function with openai.
|
||||
|
||||
Args:
|
||||
query (str): The query to vectorize
|
||||
embedding_model (str): The embedding model to use
|
||||
|
||||
Returns:
|
||||
list[float]: The vectorized query
|
||||
"""
|
||||
import openai
|
||||
|
||||
client = openai.Client(api_key=os.getenv("OPENAI_API_KEY"))
|
||||
return (
|
||||
client.embeddings.create(
|
||||
input=[query],
|
||||
model=embedding_model,
|
||||
)
|
||||
.data[0]
|
||||
.embedding
|
||||
return json.dumps(
|
||||
[
|
||||
{
|
||||
"distance": p.score,
|
||||
"metadata": p.payload.get("metadata", {}) if p.payload else {},
|
||||
"context": p.payload.get("text", "") if p.payload else {},
|
||||
}
|
||||
for p in results.points
|
||||
],
|
||||
indent=2,
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user