mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-09 16:18:30 +00:00
adjust aop to amp docs lang (#4179)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Check Documentation Broken Links / Check broken links (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Check Documentation Broken Links / Check broken links (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* adjust aop to amp docs lang * whoop no print
This commit is contained in:
@@ -8,6 +8,7 @@ mode: "wide"
|
||||
## Overview of an Agent
|
||||
|
||||
In the CrewAI framework, an `Agent` is an autonomous unit that can:
|
||||
|
||||
- Perform specific tasks
|
||||
- Make decisions based on its role and goal
|
||||
- Use tools to accomplish objectives
|
||||
@@ -16,15 +17,19 @@ In the CrewAI framework, an `Agent` is an autonomous unit that can:
|
||||
- Delegate tasks when allowed
|
||||
|
||||
<Tip>
|
||||
Think of an agent as a specialized team member with specific skills, expertise, and responsibilities. For example, a `Researcher` agent might excel at gathering and analyzing information, while a `Writer` agent might be better at creating content.
|
||||
Think of an agent as a specialized team member with specific skills,
|
||||
expertise, and responsibilities. For example, a `Researcher` agent might excel
|
||||
at gathering and analyzing information, while a `Writer` agent might be better
|
||||
at creating content.
|
||||
</Tip>
|
||||
|
||||
<Note type="info" title="Enterprise Enhancement: Visual Agent Builder">
|
||||
CrewAI AOP includes a Visual Agent Builder that simplifies agent creation and configuration without writing code. Design your agents visually and test them in real-time.
|
||||
CrewAI AMP includes a Visual Agent Builder that simplifies agent creation and configuration without writing code. Design your agents visually and test them in real-time.
|
||||
|
||||

|
||||
|
||||
The Visual Agent Builder enables:
|
||||
|
||||
- Intuitive agent configuration with form-based interfaces
|
||||
- Real-time testing and validation
|
||||
- Template library with pre-configured agent types
|
||||
@@ -33,36 +38,36 @@ The Visual Agent Builder enables:
|
||||
|
||||
## Agent Attributes
|
||||
|
||||
| Attribute | Parameter | Type | Description |
|
||||
| :-------------------------------------- | :----------------------- | :---------------------------- | :------------------------------------------------------------------------------------------------------------------- |
|
||||
| **Role** | `role` | `str` | Defines the agent's function and expertise within the crew. |
|
||||
| **Goal** | `goal` | `str` | The individual objective that guides the agent's decision-making. |
|
||||
| **Backstory** | `backstory` | `str` | Provides context and personality to the agent, enriching interactions. |
|
||||
| **LLM** _(optional)_ | `llm` | `Union[str, LLM, Any]` | Language model that powers the agent. Defaults to the model specified in `OPENAI_MODEL_NAME` or "gpt-4". |
|
||||
| **Tools** _(optional)_ | `tools` | `List[BaseTool]` | Capabilities or functions available to the agent. Defaults to an empty list. |
|
||||
| **Function Calling LLM** _(optional)_ | `function_calling_llm` | `Optional[Any]` | Language model for tool calling, overrides crew's LLM if specified. |
|
||||
| **Max Iterations** _(optional)_ | `max_iter` | `int` | Maximum iterations before the agent must provide its best answer. Default is 20. |
|
||||
| **Max RPM** _(optional)_ | `max_rpm` | `Optional[int]` | Maximum requests per minute to avoid rate limits. |
|
||||
| **Max Execution Time** _(optional)_ | `max_execution_time` | `Optional[int]` | Maximum time (in seconds) for task execution. |
|
||||
| **Verbose** _(optional)_ | `verbose` | `bool` | Enable detailed execution logs for debugging. Default is False. |
|
||||
| **Allow Delegation** _(optional)_ | `allow_delegation` | `bool` | Allow the agent to delegate tasks to other agents. Default is False. |
|
||||
| **Step Callback** _(optional)_ | `step_callback` | `Optional[Any]` | Function called after each agent step, overrides crew callback. |
|
||||
| **Cache** _(optional)_ | `cache` | `bool` | Enable caching for tool usage. Default is True. |
|
||||
| **System Template** _(optional)_ | `system_template` | `Optional[str]` | Custom system prompt template for the agent. |
|
||||
| **Prompt Template** _(optional)_ | `prompt_template` | `Optional[str]` | Custom prompt template for the agent. |
|
||||
| **Response Template** _(optional)_ | `response_template` | `Optional[str]` | Custom response template for the agent. |
|
||||
| **Allow Code Execution** _(optional)_ | `allow_code_execution` | `Optional[bool]` | Enable code execution for the agent. Default is False. |
|
||||
| **Max Retry Limit** _(optional)_ | `max_retry_limit` | `int` | Maximum number of retries when an error occurs. Default is 2. |
|
||||
| **Respect Context Window** _(optional)_ | `respect_context_window` | `bool` | Keep messages under context window size by summarizing. Default is True. |
|
||||
| **Code Execution Mode** _(optional)_ | `code_execution_mode` | `Literal["safe", "unsafe"]` | Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct). Default is 'safe'. |
|
||||
| **Multimodal** _(optional)_ | `multimodal` | `bool` | Whether the agent supports multimodal capabilities. Default is False. |
|
||||
| **Inject Date** _(optional)_ | `inject_date` | `bool` | Whether to automatically inject the current date into tasks. Default is False. |
|
||||
| **Date Format** _(optional)_ | `date_format` | `str` | Format string for date when inject_date is enabled. Default is "%Y-%m-%d" (ISO format). |
|
||||
| **Reasoning** _(optional)_ | `reasoning` | `bool` | Whether the agent should reflect and create a plan before executing a task. Default is False. |
|
||||
| **Max Reasoning Attempts** _(optional)_ | `max_reasoning_attempts` | `Optional[int]` | Maximum number of reasoning attempts before executing the task. If None, will try until ready. |
|
||||
| **Embedder** _(optional)_ | `embedder` | `Optional[Dict[str, Any]]` | Configuration for the embedder used by the agent. |
|
||||
| **Knowledge Sources** _(optional)_ | `knowledge_sources` | `Optional[List[BaseKnowledgeSource]]` | Knowledge sources available to the agent. |
|
||||
| **Use System Prompt** _(optional)_ | `use_system_prompt` | `Optional[bool]` | Whether to use system prompt (for o1 model support). Default is True. |
|
||||
| Attribute | Parameter | Type | Description |
|
||||
| :-------------------------------------- | :----------------------- | :------------------------------------ | :------------------------------------------------------------------------------------------------------- |
|
||||
| **Role** | `role` | `str` | Defines the agent's function and expertise within the crew. |
|
||||
| **Goal** | `goal` | `str` | The individual objective that guides the agent's decision-making. |
|
||||
| **Backstory** | `backstory` | `str` | Provides context and personality to the agent, enriching interactions. |
|
||||
| **LLM** _(optional)_ | `llm` | `Union[str, LLM, Any]` | Language model that powers the agent. Defaults to the model specified in `OPENAI_MODEL_NAME` or "gpt-4". |
|
||||
| **Tools** _(optional)_ | `tools` | `List[BaseTool]` | Capabilities or functions available to the agent. Defaults to an empty list. |
|
||||
| **Function Calling LLM** _(optional)_ | `function_calling_llm` | `Optional[Any]` | Language model for tool calling, overrides crew's LLM if specified. |
|
||||
| **Max Iterations** _(optional)_ | `max_iter` | `int` | Maximum iterations before the agent must provide its best answer. Default is 20. |
|
||||
| **Max RPM** _(optional)_ | `max_rpm` | `Optional[int]` | Maximum requests per minute to avoid rate limits. |
|
||||
| **Max Execution Time** _(optional)_ | `max_execution_time` | `Optional[int]` | Maximum time (in seconds) for task execution. |
|
||||
| **Verbose** _(optional)_ | `verbose` | `bool` | Enable detailed execution logs for debugging. Default is False. |
|
||||
| **Allow Delegation** _(optional)_ | `allow_delegation` | `bool` | Allow the agent to delegate tasks to other agents. Default is False. |
|
||||
| **Step Callback** _(optional)_ | `step_callback` | `Optional[Any]` | Function called after each agent step, overrides crew callback. |
|
||||
| **Cache** _(optional)_ | `cache` | `bool` | Enable caching for tool usage. Default is True. |
|
||||
| **System Template** _(optional)_ | `system_template` | `Optional[str]` | Custom system prompt template for the agent. |
|
||||
| **Prompt Template** _(optional)_ | `prompt_template` | `Optional[str]` | Custom prompt template for the agent. |
|
||||
| **Response Template** _(optional)_ | `response_template` | `Optional[str]` | Custom response template for the agent. |
|
||||
| **Allow Code Execution** _(optional)_ | `allow_code_execution` | `Optional[bool]` | Enable code execution for the agent. Default is False. |
|
||||
| **Max Retry Limit** _(optional)_ | `max_retry_limit` | `int` | Maximum number of retries when an error occurs. Default is 2. |
|
||||
| **Respect Context Window** _(optional)_ | `respect_context_window` | `bool` | Keep messages under context window size by summarizing. Default is True. |
|
||||
| **Code Execution Mode** _(optional)_ | `code_execution_mode` | `Literal["safe", "unsafe"]` | Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct). Default is 'safe'. |
|
||||
| **Multimodal** _(optional)_ | `multimodal` | `bool` | Whether the agent supports multimodal capabilities. Default is False. |
|
||||
| **Inject Date** _(optional)_ | `inject_date` | `bool` | Whether to automatically inject the current date into tasks. Default is False. |
|
||||
| **Date Format** _(optional)_ | `date_format` | `str` | Format string for date when inject_date is enabled. Default is "%Y-%m-%d" (ISO format). |
|
||||
| **Reasoning** _(optional)_ | `reasoning` | `bool` | Whether the agent should reflect and create a plan before executing a task. Default is False. |
|
||||
| **Max Reasoning Attempts** _(optional)_ | `max_reasoning_attempts` | `Optional[int]` | Maximum number of reasoning attempts before executing the task. If None, will try until ready. |
|
||||
| **Embedder** _(optional)_ | `embedder` | `Optional[Dict[str, Any]]` | Configuration for the embedder used by the agent. |
|
||||
| **Knowledge Sources** _(optional)_ | `knowledge_sources` | `Optional[List[BaseKnowledgeSource]]` | Knowledge sources available to the agent. |
|
||||
| **Use System Prompt** _(optional)_ | `use_system_prompt` | `Optional[bool]` | Whether to use system prompt (for o1 model support). Default is True. |
|
||||
|
||||
## Creating Agents
|
||||
|
||||
@@ -137,7 +142,8 @@ class LatestAiDevelopmentCrew():
|
||||
```
|
||||
|
||||
<Note>
|
||||
The names you use in your YAML files (`agents.yaml`) should match the method names in your Python code.
|
||||
The names you use in your YAML files (`agents.yaml`) should match the method
|
||||
names in your Python code.
|
||||
</Note>
|
||||
|
||||
### Direct Code Definition
|
||||
@@ -184,6 +190,7 @@ agent = Agent(
|
||||
Let's break down some key parameter combinations for common use cases:
|
||||
|
||||
#### Basic Research Agent
|
||||
|
||||
```python Code
|
||||
research_agent = Agent(
|
||||
role="Research Analyst",
|
||||
@@ -195,6 +202,7 @@ research_agent = Agent(
|
||||
```
|
||||
|
||||
#### Code Development Agent
|
||||
|
||||
```python Code
|
||||
dev_agent = Agent(
|
||||
role="Senior Python Developer",
|
||||
@@ -208,6 +216,7 @@ dev_agent = Agent(
|
||||
```
|
||||
|
||||
#### Long-Running Analysis Agent
|
||||
|
||||
```python Code
|
||||
analysis_agent = Agent(
|
||||
role="Data Analyst",
|
||||
@@ -221,6 +230,7 @@ analysis_agent = Agent(
|
||||
```
|
||||
|
||||
#### Custom Template Agent
|
||||
|
||||
```python Code
|
||||
custom_agent = Agent(
|
||||
role="Customer Service Representative",
|
||||
@@ -236,6 +246,7 @@ custom_agent = Agent(
|
||||
```
|
||||
|
||||
#### Date-Aware Agent with Reasoning
|
||||
|
||||
```python Code
|
||||
strategic_agent = Agent(
|
||||
role="Market Analyst",
|
||||
@@ -250,6 +261,7 @@ strategic_agent = Agent(
|
||||
```
|
||||
|
||||
#### Reasoning Agent
|
||||
|
||||
```python Code
|
||||
reasoning_agent = Agent(
|
||||
role="Strategic Planner",
|
||||
@@ -263,6 +275,7 @@ reasoning_agent = Agent(
|
||||
```
|
||||
|
||||
#### Multimodal Agent
|
||||
|
||||
```python Code
|
||||
multimodal_agent = Agent(
|
||||
role="Visual Content Analyst",
|
||||
@@ -276,52 +289,64 @@ multimodal_agent = Agent(
|
||||
### Parameter Details
|
||||
|
||||
#### Critical Parameters
|
||||
|
||||
- `role`, `goal`, and `backstory` are required and shape the agent's behavior
|
||||
- `llm` determines the language model used (default: OpenAI's GPT-4)
|
||||
|
||||
#### Memory and Context
|
||||
|
||||
- `memory`: Enable to maintain conversation history
|
||||
- `respect_context_window`: Prevents token limit issues
|
||||
- `knowledge_sources`: Add domain-specific knowledge bases
|
||||
|
||||
#### Execution Control
|
||||
|
||||
- `max_iter`: Maximum attempts before giving best answer
|
||||
- `max_execution_time`: Timeout in seconds
|
||||
- `max_rpm`: Rate limiting for API calls
|
||||
- `max_retry_limit`: Retries on error
|
||||
|
||||
#### Code Execution
|
||||
|
||||
- `allow_code_execution`: Must be True to run code
|
||||
- `code_execution_mode`:
|
||||
- `"safe"`: Uses Docker (recommended for production)
|
||||
- `"unsafe"`: Direct execution (use only in trusted environments)
|
||||
|
||||
<Note>
|
||||
This runs a default Docker image. If you want to configure the docker image, the checkout the Code Interpreter Tool in the tools section.
|
||||
Add the code interpreter tool as a tool in the agent as a tool parameter.
|
||||
</Note>
|
||||
This runs a default Docker image. If you want to configure the docker image,
|
||||
the checkout the Code Interpreter Tool in the tools section. Add the code
|
||||
interpreter tool as a tool in the agent as a tool parameter.
|
||||
</Note>
|
||||
|
||||
#### Advanced Features
|
||||
|
||||
- `multimodal`: Enable multimodal capabilities for processing text and visual content
|
||||
- `reasoning`: Enable agent to reflect and create plans before executing tasks
|
||||
- `inject_date`: Automatically inject current date into task descriptions
|
||||
|
||||
#### Templates
|
||||
|
||||
- `system_template`: Defines agent's core behavior
|
||||
- `prompt_template`: Structures input format
|
||||
- `response_template`: Formats agent responses
|
||||
|
||||
<Note>
|
||||
When using custom templates, ensure that both `system_template` and `prompt_template` are defined. The `response_template` is optional but recommended for consistent output formatting.
|
||||
When using custom templates, ensure that both `system_template` and
|
||||
`prompt_template` are defined. The `response_template` is optional but
|
||||
recommended for consistent output formatting.
|
||||
</Note>
|
||||
|
||||
<Note>
|
||||
When using custom templates, you can use variables like `{role}`, `{goal}`, and `{backstory}` in your templates. These will be automatically populated during execution.
|
||||
When using custom templates, you can use variables like `{role}`, `{goal}`,
|
||||
and `{backstory}` in your templates. These will be automatically populated
|
||||
during execution.
|
||||
</Note>
|
||||
|
||||
## Agent Tools
|
||||
|
||||
Agents can be equipped with various tools to enhance their capabilities. CrewAI supports tools from:
|
||||
|
||||
- [CrewAI Toolkit](https://github.com/joaomdmoura/crewai-tools)
|
||||
- [LangChain Tools](https://python.langchain.com/docs/integrations/tools)
|
||||
|
||||
@@ -360,7 +385,8 @@ analyst = Agent(
|
||||
```
|
||||
|
||||
<Note>
|
||||
When `memory` is enabled, the agent will maintain context across multiple interactions, improving its ability to handle complex, multi-step tasks.
|
||||
When `memory` is enabled, the agent will maintain context across multiple
|
||||
interactions, improving its ability to handle complex, multi-step tasks.
|
||||
</Note>
|
||||
|
||||
## Context Window Management
|
||||
@@ -390,6 +416,7 @@ smart_agent = Agent(
|
||||
```
|
||||
|
||||
**What happens when context limits are exceeded:**
|
||||
|
||||
- ⚠️ **Warning message**: `"Context length exceeded. Summarizing content to fit the model context window."`
|
||||
- 🔄 **Automatic summarization**: CrewAI intelligently summarizes the conversation history
|
||||
- ✅ **Continued execution**: Task execution continues seamlessly with the summarized context
|
||||
@@ -411,6 +438,7 @@ strict_agent = Agent(
|
||||
```
|
||||
|
||||
**What happens when context limits are exceeded:**
|
||||
|
||||
- ❌ **Error message**: `"Context length exceeded. Consider using smaller text or RAG tools from crewai_tools."`
|
||||
- 🛑 **Execution stops**: Task execution halts immediately
|
||||
- 🔧 **Manual intervention required**: You need to modify your approach
|
||||
@@ -418,6 +446,7 @@ strict_agent = Agent(
|
||||
### Choosing the Right Setting
|
||||
|
||||
#### Use `respect_context_window=True` (Default) when:
|
||||
|
||||
- **Processing large documents** that might exceed context limits
|
||||
- **Long-running conversations** where some summarization is acceptable
|
||||
- **Research tasks** where general context is more important than exact details
|
||||
@@ -436,6 +465,7 @@ document_processor = Agent(
|
||||
```
|
||||
|
||||
#### Use `respect_context_window=False` when:
|
||||
|
||||
- **Precision is critical** and information loss is unacceptable
|
||||
- **Legal or medical tasks** requiring complete context
|
||||
- **Code review** where missing details could introduce bugs
|
||||
@@ -458,6 +488,7 @@ precision_agent = Agent(
|
||||
When dealing with very large datasets, consider these strategies:
|
||||
|
||||
#### 1. Use RAG Tools
|
||||
|
||||
```python Code
|
||||
from crewai_tools import RagTool
|
||||
|
||||
@@ -475,6 +506,7 @@ rag_agent = Agent(
|
||||
```
|
||||
|
||||
#### 2. Use Knowledge Sources
|
||||
|
||||
```python Code
|
||||
# Use knowledge sources instead of large prompts
|
||||
knowledge_agent = Agent(
|
||||
@@ -498,6 +530,7 @@ knowledge_agent = Agent(
|
||||
### Troubleshooting Context Issues
|
||||
|
||||
**If you're getting context limit errors:**
|
||||
|
||||
```python Code
|
||||
# Quick fix: Enable automatic handling
|
||||
agent.respect_context_window = True
|
||||
@@ -511,6 +544,7 @@ agent.tools = [RagTool()]
|
||||
```
|
||||
|
||||
**If automatic summarization loses important information:**
|
||||
|
||||
```python Code
|
||||
# Disable auto-summarization and use RAG instead
|
||||
agent = Agent(
|
||||
@@ -524,7 +558,10 @@ agent = Agent(
|
||||
```
|
||||
|
||||
<Note>
|
||||
The context window management feature works automatically in the background. You don't need to call any special functions - just set `respect_context_window` to your preferred behavior and CrewAI handles the rest!
|
||||
The context window management feature works automatically in the background.
|
||||
You don't need to call any special functions - just set
|
||||
`respect_context_window` to your preferred behavior and CrewAI handles the
|
||||
rest!
|
||||
</Note>
|
||||
|
||||
## Direct Agent Interaction with `kickoff()`
|
||||
@@ -556,10 +593,10 @@ print(result.raw)
|
||||
|
||||
### Parameters and Return Values
|
||||
|
||||
| Parameter | Type | Description |
|
||||
| :---------------- | :---------------------------------- | :------------------------------------------------------------------------ |
|
||||
| `messages` | `Union[str, List[Dict[str, str]]]` | Either a string query or a list of message dictionaries with role/content |
|
||||
| `response_format` | `Optional[Type[Any]]` | Optional Pydantic model for structured output |
|
||||
| Parameter | Type | Description |
|
||||
| :---------------- | :--------------------------------- | :------------------------------------------------------------------------ |
|
||||
| `messages` | `Union[str, List[Dict[str, str]]]` | Either a string query or a list of message dictionaries with role/content |
|
||||
| `response_format` | `Optional[Type[Any]]` | Optional Pydantic model for structured output |
|
||||
|
||||
The method returns a `LiteAgentOutput` object with the following properties:
|
||||
|
||||
@@ -621,28 +658,34 @@ asyncio.run(main())
|
||||
```
|
||||
|
||||
<Note>
|
||||
The `kickoff()` method uses a `LiteAgent` internally, which provides a simpler execution flow while preserving all of the agent's configuration (role, goal, backstory, tools, etc.).
|
||||
The `kickoff()` method uses a `LiteAgent` internally, which provides a simpler
|
||||
execution flow while preserving all of the agent's configuration (role, goal,
|
||||
backstory, tools, etc.).
|
||||
</Note>
|
||||
|
||||
## Important Considerations and Best Practices
|
||||
|
||||
### Security and Code Execution
|
||||
|
||||
- When using `allow_code_execution`, be cautious with user input and always validate it
|
||||
- Use `code_execution_mode: "safe"` (Docker) in production environments
|
||||
- Consider setting appropriate `max_execution_time` limits to prevent infinite loops
|
||||
|
||||
### Performance Optimization
|
||||
|
||||
- Use `respect_context_window: true` to prevent token limit issues
|
||||
- Set appropriate `max_rpm` to avoid rate limiting
|
||||
- Enable `cache: true` to improve performance for repetitive tasks
|
||||
- Adjust `max_iter` and `max_retry_limit` based on task complexity
|
||||
|
||||
### Memory and Context Management
|
||||
|
||||
- Leverage `knowledge_sources` for domain-specific information
|
||||
- Configure `embedder` when using custom embedding models
|
||||
- Use custom templates (`system_template`, `prompt_template`, `response_template`) for fine-grained control over agent behavior
|
||||
|
||||
### Advanced Features
|
||||
|
||||
- Enable `reasoning: true` for agents that need to plan and reflect before executing complex tasks
|
||||
- Set appropriate `max_reasoning_attempts` to control planning iterations (None for unlimited attempts)
|
||||
- Use `inject_date: true` to provide agents with current date awareness for time-sensitive tasks
|
||||
@@ -650,6 +693,7 @@ The `kickoff()` method uses a `LiteAgent` internally, which provides a simpler e
|
||||
- Enable `multimodal: true` for agents that need to process both text and visual content
|
||||
|
||||
### Agent Collaboration
|
||||
|
||||
- Enable `allow_delegation: true` when agents need to work together
|
||||
- Use `step_callback` to monitor and log agent interactions
|
||||
- Consider using different LLMs for different purposes:
|
||||
@@ -657,6 +701,7 @@ The `kickoff()` method uses a `LiteAgent` internally, which provides a simpler e
|
||||
- `function_calling_llm` for efficient tool usage
|
||||
|
||||
### Date Awareness and Reasoning
|
||||
|
||||
- Use `inject_date: true` to provide agents with current date awareness for time-sensitive tasks
|
||||
- Customize the date format with `date_format` using standard Python datetime format codes
|
||||
- Valid format codes include: %Y (year), %m (month), %d (day), %B (full month name), etc.
|
||||
@@ -664,22 +709,26 @@ The `kickoff()` method uses a `LiteAgent` internally, which provides a simpler e
|
||||
- Enable `reasoning: true` for complex tasks that benefit from upfront planning and reflection
|
||||
|
||||
### Model Compatibility
|
||||
|
||||
- Set `use_system_prompt: false` for older models that don't support system messages
|
||||
- Ensure your chosen `llm` supports the features you need (like function calling)
|
||||
|
||||
## Troubleshooting Common Issues
|
||||
|
||||
1. **Rate Limiting**: If you're hitting API rate limits:
|
||||
|
||||
- Implement appropriate `max_rpm`
|
||||
- Use caching for repetitive operations
|
||||
- Consider batching requests
|
||||
|
||||
2. **Context Window Errors**: If you're exceeding context limits:
|
||||
|
||||
- Enable `respect_context_window`
|
||||
- Use more efficient prompts
|
||||
- Clear agent memory periodically
|
||||
|
||||
3. **Code Execution Issues**: If code execution fails:
|
||||
|
||||
- Verify Docker is installed for safe mode
|
||||
- Check execution permissions
|
||||
- Review code sandbox settings
|
||||
|
||||
Reference in New Issue
Block a user