mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-16 04:18:35 +00:00
docs: Update JSONSearchTool and RagTool configuration parameter from 'embedder' to 'embedding_model' (#2311)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
This commit is contained in:
@@ -7,8 +7,10 @@ icon: file-code
|
|||||||
# `JSONSearchTool`
|
# `JSONSearchTool`
|
||||||
|
|
||||||
<Note>
|
<Note>
|
||||||
The JSONSearchTool is currently in an experimental phase. This means the tool is under active development, and users might encounter unexpected behavior or changes.
|
The JSONSearchTool is currently in an experimental phase. This means the tool
|
||||||
We highly encourage feedback on any issues or suggestions for improvements.
|
is under active development, and users might encounter unexpected behavior or
|
||||||
|
changes. We highly encourage feedback on any issues or suggestions for
|
||||||
|
improvements.
|
||||||
</Note>
|
</Note>
|
||||||
|
|
||||||
## Description
|
## Description
|
||||||
@@ -60,7 +62,7 @@ tool = JSONSearchTool(
|
|||||||
# stream=true,
|
# stream=true,
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
"embedder": {
|
"embedding_model": {
|
||||||
"provider": "google", # or openai, ollama, ...
|
"provider": "google", # or openai, ollama, ...
|
||||||
"config": {
|
"config": {
|
||||||
"model": "models/embedding-001",
|
"model": "models/embedding-001",
|
||||||
@@ -70,4 +72,4 @@ tool = JSONSearchTool(
|
|||||||
},
|
},
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
```
|
```
|
||||||
|
|||||||
@@ -8,8 +8,8 @@ icon: vector-square
|
|||||||
|
|
||||||
## Description
|
## Description
|
||||||
|
|
||||||
The `RagTool` is designed to answer questions by leveraging the power of Retrieval-Augmented Generation (RAG) through EmbedChain.
|
The `RagTool` is designed to answer questions by leveraging the power of Retrieval-Augmented Generation (RAG) through EmbedChain.
|
||||||
It provides a dynamic knowledge base that can be queried to retrieve relevant information from various data sources.
|
It provides a dynamic knowledge base that can be queried to retrieve relevant information from various data sources.
|
||||||
This tool is particularly useful for applications that require access to a vast array of information and need to provide contextually relevant answers.
|
This tool is particularly useful for applications that require access to a vast array of information and need to provide contextually relevant answers.
|
||||||
|
|
||||||
## Example
|
## Example
|
||||||
@@ -138,7 +138,7 @@ config = {
|
|||||||
"model": "gpt-4",
|
"model": "gpt-4",
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"embedder": {
|
"embedding_model": {
|
||||||
"provider": "openai",
|
"provider": "openai",
|
||||||
"config": {
|
"config": {
|
||||||
"model": "text-embedding-ada-002"
|
"model": "text-embedding-ada-002"
|
||||||
@@ -151,4 +151,4 @@ rag_tool = RagTool(config=config, summarize=True)
|
|||||||
|
|
||||||
## Conclusion
|
## Conclusion
|
||||||
|
|
||||||
The `RagTool` provides a powerful way to create and query knowledge bases from various data sources. By leveraging Retrieval-Augmented Generation, it enables agents to access and retrieve relevant information efficiently, enhancing their ability to provide accurate and contextually appropriate responses.
|
The `RagTool` provides a powerful way to create and query knowledge bases from various data sources. By leveraging Retrieval-Augmented Generation, it enables agents to access and retrieve relevant information efficiently, enhancing their ability to provide accurate and contextually appropriate responses.
|
||||||
|
|||||||
Reference in New Issue
Block a user