mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-10 16:48:30 +00:00
apply agent ops changes and resolve merge conflicts (#1748)
* apply agent ops changes and resolve merge conflicts * Trying to fix tests * add back in vcr * update tools * remove pkg_resources which was causing issues * Fix tests * experimenting to see if unique content is an issue with knowledge * experimenting to see if unique content is an issue with knowledge * update chromadb which seems to have issues with upsert * generate new yaml for failing test * Investigating upsert * Drop patch * Update casettes * Fix duplicate document issue * more fixes * add back in vcr * new cassette for test --------- Co-authored-by: Lorenze Jay <lorenzejaytech@gmail.com>
This commit is contained in:
committed by
GitHub
parent
ad916abd76
commit
1ffa8904db
@@ -23,27 +23,19 @@ from crewai.utilities.converter import generate_model_description
|
||||
from crewai.utilities.token_counter_callback import TokenCalcHandler
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
|
||||
agentops = None
|
||||
|
||||
def mock_agent_ops_provider():
|
||||
def track_agent(*args, **kwargs):
|
||||
try:
|
||||
import agentops # type: ignore # Name "agentops" is already defined
|
||||
from agentops import track_agent # type: ignore
|
||||
except ImportError:
|
||||
|
||||
def track_agent():
|
||||
def noop(f):
|
||||
return f
|
||||
|
||||
return noop
|
||||
|
||||
return track_agent
|
||||
|
||||
|
||||
agentops = None
|
||||
|
||||
if os.environ.get("AGENTOPS_API_KEY"):
|
||||
try:
|
||||
from agentops import track_agent
|
||||
except ImportError:
|
||||
track_agent = mock_agent_ops_provider()
|
||||
else:
|
||||
track_agent = mock_agent_ops_provider()
|
||||
|
||||
|
||||
@track_agent()
|
||||
class Agent(BaseAgent):
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
import asyncio
|
||||
import json
|
||||
import os
|
||||
import uuid
|
||||
import warnings
|
||||
from concurrent.futures import Future
|
||||
@@ -49,12 +48,10 @@ from crewai.utilities.planning_handler import CrewPlanner
|
||||
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
|
||||
agentops = None
|
||||
if os.environ.get("AGENTOPS_API_KEY"):
|
||||
try:
|
||||
import agentops # type: ignore
|
||||
except ImportError:
|
||||
pass
|
||||
try:
|
||||
import agentops # type: ignore
|
||||
except ImportError:
|
||||
agentops = None
|
||||
|
||||
|
||||
warnings.filterwarnings("ignore", category=SyntaxWarning, module="pysbd")
|
||||
|
||||
@@ -46,4 +46,5 @@ class BaseKnowledgeSource(BaseModel, ABC):
|
||||
Save the documents to the storage.
|
||||
This method should be called after the chunks and embeddings are generated.
|
||||
"""
|
||||
print("CHUNKS: ", self.chunks)
|
||||
self.storage.save(self.chunks)
|
||||
|
||||
@@ -124,43 +124,60 @@ class KnowledgeStorage(BaseKnowledgeStorage):
|
||||
documents: List[str],
|
||||
metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None,
|
||||
):
|
||||
if self.collection:
|
||||
try:
|
||||
if metadata is None:
|
||||
metadatas: Optional[OneOrMany[chromadb.Metadata]] = None
|
||||
elif isinstance(metadata, list):
|
||||
metadatas = [cast(chromadb.Metadata, m) for m in metadata]
|
||||
else:
|
||||
metadatas = cast(chromadb.Metadata, metadata)
|
||||
|
||||
ids = [
|
||||
hashlib.sha256(doc.encode("utf-8")).hexdigest() for doc in documents
|
||||
]
|
||||
|
||||
self.collection.upsert(
|
||||
documents=documents,
|
||||
metadatas=metadatas,
|
||||
ids=ids,
|
||||
)
|
||||
except chromadb.errors.InvalidDimensionException as e:
|
||||
Logger(verbose=True).log(
|
||||
"error",
|
||||
"Embedding dimension mismatch. This usually happens when mixing different embedding models. Try resetting the collection using `crewai reset-memories -a`",
|
||||
"red",
|
||||
)
|
||||
raise ValueError(
|
||||
"Embedding dimension mismatch. Make sure you're using the same embedding model "
|
||||
"across all operations with this collection."
|
||||
"Try resetting the collection using `crewai reset-memories -a`"
|
||||
) from e
|
||||
except Exception as e:
|
||||
Logger(verbose=True).log(
|
||||
"error", f"Failed to upsert documents: {e}", "red"
|
||||
)
|
||||
raise
|
||||
else:
|
||||
if not self.collection:
|
||||
raise Exception("Collection not initialized")
|
||||
|
||||
try:
|
||||
# Create a dictionary to store unique documents
|
||||
unique_docs = {}
|
||||
|
||||
# Generate IDs and create a mapping of id -> (document, metadata)
|
||||
for idx, doc in enumerate(documents):
|
||||
doc_id = hashlib.sha256(doc.encode("utf-8")).hexdigest()
|
||||
doc_metadata = None
|
||||
if metadata is not None:
|
||||
if isinstance(metadata, list):
|
||||
doc_metadata = metadata[idx]
|
||||
else:
|
||||
doc_metadata = metadata
|
||||
unique_docs[doc_id] = (doc, doc_metadata)
|
||||
|
||||
# Prepare filtered lists for ChromaDB
|
||||
filtered_docs = []
|
||||
filtered_metadata = []
|
||||
filtered_ids = []
|
||||
|
||||
# Build the filtered lists
|
||||
for doc_id, (doc, meta) in unique_docs.items():
|
||||
filtered_docs.append(doc)
|
||||
filtered_metadata.append(meta)
|
||||
filtered_ids.append(doc_id)
|
||||
|
||||
# If we have no metadata at all, set it to None
|
||||
final_metadata: Optional[OneOrMany[chromadb.Metadata]] = (
|
||||
None if all(m is None for m in filtered_metadata) else filtered_metadata
|
||||
)
|
||||
|
||||
self.collection.upsert(
|
||||
documents=filtered_docs,
|
||||
metadatas=final_metadata,
|
||||
ids=filtered_ids,
|
||||
)
|
||||
except chromadb.errors.InvalidDimensionException as e:
|
||||
Logger(verbose=True).log(
|
||||
"error",
|
||||
"Embedding dimension mismatch. This usually happens when mixing different embedding models. Try resetting the collection using `crewai reset-memories -a`",
|
||||
"red",
|
||||
)
|
||||
raise ValueError(
|
||||
"Embedding dimension mismatch. Make sure you're using the same embedding model "
|
||||
"across all operations with this collection."
|
||||
"Try resetting the collection using `crewai reset-memories -a`"
|
||||
) from e
|
||||
except Exception as e:
|
||||
Logger(verbose=True).log("error", f"Failed to upsert documents: {e}", "red")
|
||||
raise
|
||||
|
||||
def _create_default_embedding_function(self):
|
||||
from chromadb.utils.embedding_functions.openai_embedding_function import (
|
||||
OpenAIEmbeddingFunction,
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
import ast
|
||||
import datetime
|
||||
import os
|
||||
import time
|
||||
from difflib import SequenceMatcher
|
||||
from textwrap import dedent
|
||||
@@ -15,12 +14,10 @@ from crewai.tools.tool_calling import InstructorToolCalling, ToolCalling
|
||||
from crewai.tools.tool_usage_events import ToolUsageError, ToolUsageFinished
|
||||
from crewai.utilities import I18N, Converter, ConverterError, Printer
|
||||
|
||||
agentops = None
|
||||
if os.environ.get("AGENTOPS_API_KEY"):
|
||||
try:
|
||||
import agentops # type: ignore
|
||||
except ImportError:
|
||||
pass
|
||||
try:
|
||||
import agentops # type: ignore
|
||||
except ImportError:
|
||||
agentops = None
|
||||
|
||||
OPENAI_BIGGER_MODELS = ["gpt-4", "gpt-4o", "o1-preview", "o1-mini"]
|
||||
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
import os
|
||||
from typing import List
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
@@ -6,27 +5,17 @@ from pydantic import BaseModel, Field
|
||||
from crewai.utilities import Converter
|
||||
from crewai.utilities.pydantic_schema_parser import PydanticSchemaParser
|
||||
|
||||
agentops = None
|
||||
try:
|
||||
from agentops import track_agent # type: ignore
|
||||
except ImportError:
|
||||
|
||||
def mock_agent_ops_provider():
|
||||
def track_agent(*args, **kwargs):
|
||||
def track_agent(name):
|
||||
def noop(f):
|
||||
return f
|
||||
|
||||
return noop
|
||||
|
||||
return track_agent
|
||||
|
||||
|
||||
agentops = None
|
||||
|
||||
if os.environ.get("AGENTOPS_API_KEY"):
|
||||
try:
|
||||
from agentops import track_agent
|
||||
except ImportError:
|
||||
track_agent = mock_agent_ops_provider()
|
||||
else:
|
||||
track_agent = mock_agent_ops_provider()
|
||||
|
||||
|
||||
class Entity(BaseModel):
|
||||
name: str = Field(description="The name of the entity.")
|
||||
|
||||
Reference in New Issue
Block a user