mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-13 01:58:30 +00:00
fix: add batch_size support to prevent embedder token limit errors
- add batch_size field to baseragconfig (default=100) - update chromadb/qdrant clients and factories to use batch_size - extract and filter batch_size from embedder config in knowledgestorage - fix large csv files exceeding embedder token limits (#3574) - remove unneeded conditional for type Co-authored-by: Vini Brasil <vini@hey.com>
This commit is contained in:
@@ -8,7 +8,7 @@ from crewai.rag.chromadb.config import ChromaDBConfig
|
||||
from crewai.rag.chromadb.types import ChromaEmbeddingFunctionWrapper
|
||||
from crewai.rag.config.utils import get_rag_client
|
||||
from crewai.rag.core.base_client import BaseClient
|
||||
from crewai.rag.embeddings.factory import get_embedding_function
|
||||
from crewai.rag.embeddings.factory import EmbedderConfig, get_embedding_function
|
||||
from crewai.rag.factory import create_client
|
||||
from crewai.rag.types import BaseRecord, SearchResult
|
||||
from crewai.utilities.logger import Logger
|
||||
@@ -27,6 +27,7 @@ class KnowledgeStorage(BaseKnowledgeStorage):
|
||||
) -> None:
|
||||
self.collection_name = collection_name
|
||||
self._client: BaseClient | None = None
|
||||
self._embedder_config = embedder # Store embedder config
|
||||
|
||||
warnings.filterwarnings(
|
||||
"ignore",
|
||||
@@ -35,12 +36,29 @@ class KnowledgeStorage(BaseKnowledgeStorage):
|
||||
)
|
||||
|
||||
if embedder:
|
||||
embedding_function = get_embedding_function(embedder)
|
||||
config = ChromaDBConfig(
|
||||
embedding_function=cast(
|
||||
ChromaEmbeddingFunctionWrapper, embedding_function
|
||||
# Cast to EmbedderConfig for type checking
|
||||
embedder_typed = cast(EmbedderConfig, embedder)
|
||||
embedding_function = get_embedding_function(embedder_typed)
|
||||
batch_size = None
|
||||
if isinstance(embedder, dict) and "config" in embedder:
|
||||
nested_config = embedder["config"]
|
||||
if isinstance(nested_config, dict):
|
||||
batch_size = nested_config.get("batch_size")
|
||||
|
||||
# Create config with batch_size if provided
|
||||
if batch_size is not None:
|
||||
config = ChromaDBConfig(
|
||||
embedding_function=cast(
|
||||
ChromaEmbeddingFunctionWrapper, embedding_function
|
||||
),
|
||||
batch_size=batch_size,
|
||||
)
|
||||
else:
|
||||
config = ChromaDBConfig(
|
||||
embedding_function=cast(
|
||||
ChromaEmbeddingFunctionWrapper, embedding_function
|
||||
)
|
||||
)
|
||||
)
|
||||
self._client = create_client(config)
|
||||
|
||||
def _get_client(self) -> BaseClient:
|
||||
@@ -105,9 +123,23 @@ class KnowledgeStorage(BaseKnowledgeStorage):
|
||||
|
||||
rag_documents: list[BaseRecord] = [{"content": doc} for doc in documents]
|
||||
|
||||
client.add_documents(
|
||||
collection_name=collection_name, documents=rag_documents
|
||||
)
|
||||
batch_size = None
|
||||
if self._embedder_config and isinstance(self._embedder_config, dict):
|
||||
if "config" in self._embedder_config:
|
||||
nested_config = self._embedder_config["config"]
|
||||
if isinstance(nested_config, dict):
|
||||
batch_size = nested_config.get("batch_size")
|
||||
|
||||
if batch_size is not None:
|
||||
client.add_documents(
|
||||
collection_name=collection_name,
|
||||
documents=rag_documents,
|
||||
batch_size=batch_size,
|
||||
)
|
||||
else:
|
||||
client.add_documents(
|
||||
collection_name=collection_name, documents=rag_documents
|
||||
)
|
||||
except Exception as e:
|
||||
if "dimension mismatch" in str(e).lower():
|
||||
Logger(verbose=True).log(
|
||||
|
||||
@@ -66,11 +66,28 @@ class RAGStorage(BaseRAGStorage):
|
||||
f"Error: {e}"
|
||||
) from e
|
||||
|
||||
config = ChromaDBConfig(
|
||||
embedding_function=cast(
|
||||
ChromaEmbeddingFunctionWrapper, embedding_function
|
||||
batch_size = None
|
||||
if (
|
||||
isinstance(self.embedder_config, dict)
|
||||
and "config" in self.embedder_config
|
||||
):
|
||||
nested_config = self.embedder_config["config"]
|
||||
if isinstance(nested_config, dict):
|
||||
batch_size = nested_config.get("batch_size")
|
||||
|
||||
if batch_size is not None:
|
||||
config = ChromaDBConfig(
|
||||
embedding_function=cast(
|
||||
ChromaEmbeddingFunctionWrapper, embedding_function
|
||||
),
|
||||
batch_size=batch_size,
|
||||
)
|
||||
else:
|
||||
config = ChromaDBConfig(
|
||||
embedding_function=cast(
|
||||
ChromaEmbeddingFunctionWrapper, embedding_function
|
||||
)
|
||||
)
|
||||
)
|
||||
self._client = create_client(config)
|
||||
|
||||
def _get_client(self) -> BaseClient:
|
||||
@@ -111,7 +128,26 @@ class RAGStorage(BaseRAGStorage):
|
||||
if metadata:
|
||||
document["metadata"] = metadata
|
||||
|
||||
client.add_documents(collection_name=collection_name, documents=[document])
|
||||
batch_size = None
|
||||
if (
|
||||
self.embedder_config
|
||||
and isinstance(self.embedder_config, dict)
|
||||
and "config" in self.embedder_config
|
||||
):
|
||||
nested_config = self.embedder_config["config"]
|
||||
if isinstance(nested_config, dict):
|
||||
batch_size = nested_config.get("batch_size")
|
||||
|
||||
if batch_size is not None:
|
||||
client.add_documents(
|
||||
collection_name=collection_name,
|
||||
documents=[document],
|
||||
batch_size=batch_size,
|
||||
)
|
||||
else:
|
||||
client.add_documents(
|
||||
collection_name=collection_name, documents=[document]
|
||||
)
|
||||
except Exception as e:
|
||||
logging.error(
|
||||
f"Error during {self.type} save: {e!s}\n{traceback.format_exc()}"
|
||||
|
||||
@@ -17,6 +17,7 @@ from crewai.rag.chromadb.types import (
|
||||
ChromaDBCollectionSearchParams,
|
||||
)
|
||||
from crewai.rag.chromadb.utils import (
|
||||
_create_batch_slice,
|
||||
_extract_search_params,
|
||||
_is_async_client,
|
||||
_is_sync_client,
|
||||
@@ -52,6 +53,7 @@ class ChromaDBClient(BaseClient):
|
||||
embedding_function: ChromaEmbeddingFunction,
|
||||
default_limit: int = 5,
|
||||
default_score_threshold: float = 0.6,
|
||||
default_batch_size: int = 100,
|
||||
) -> None:
|
||||
"""Initialize ChromaDBClient with client and embedding function.
|
||||
|
||||
@@ -60,11 +62,13 @@ class ChromaDBClient(BaseClient):
|
||||
embedding_function: Embedding function for text to vector conversion.
|
||||
default_limit: Default number of results to return in searches.
|
||||
default_score_threshold: Default minimum score for search results.
|
||||
default_batch_size: Default batch size for adding documents.
|
||||
"""
|
||||
self.client = client
|
||||
self.embedding_function = embedding_function
|
||||
self.default_limit = default_limit
|
||||
self.default_score_threshold = default_score_threshold
|
||||
self.default_batch_size = default_batch_size
|
||||
|
||||
def create_collection(
|
||||
self, **kwargs: Unpack[ChromaDBCollectionCreateParams]
|
||||
@@ -291,6 +295,7 @@ class ChromaDBClient(BaseClient):
|
||||
- content: The text content (required)
|
||||
- doc_id: Optional unique identifier (auto-generated if missing)
|
||||
- metadata: Optional metadata dictionary
|
||||
batch_size: Optional batch size for processing documents (default: 100)
|
||||
|
||||
Raises:
|
||||
TypeError: If AsyncClientAPI is used instead of ClientAPI for sync operations.
|
||||
@@ -305,6 +310,7 @@ class ChromaDBClient(BaseClient):
|
||||
|
||||
collection_name = kwargs["collection_name"]
|
||||
documents = kwargs["documents"]
|
||||
batch_size = kwargs.get("batch_size", self.default_batch_size)
|
||||
|
||||
if not documents:
|
||||
raise ValueError("Documents list cannot be empty")
|
||||
@@ -315,13 +321,17 @@ class ChromaDBClient(BaseClient):
|
||||
)
|
||||
|
||||
prepared = _prepare_documents_for_chromadb(documents)
|
||||
# ChromaDB doesn't accept empty metadata dicts, so pass None if all are empty
|
||||
metadatas = prepared.metadatas if any(m for m in prepared.metadatas) else None
|
||||
collection.upsert(
|
||||
ids=prepared.ids,
|
||||
documents=prepared.texts,
|
||||
metadatas=metadatas,
|
||||
)
|
||||
|
||||
for i in range(0, len(prepared.ids), batch_size):
|
||||
batch_ids, batch_texts, batch_metadatas = _create_batch_slice(
|
||||
prepared=prepared, start_index=i, batch_size=batch_size
|
||||
)
|
||||
|
||||
collection.upsert(
|
||||
ids=batch_ids,
|
||||
documents=batch_texts,
|
||||
metadatas=batch_metadatas,
|
||||
)
|
||||
|
||||
async def aadd_documents(self, **kwargs: Unpack[BaseCollectionAddParams]) -> None:
|
||||
"""Add documents with their embeddings to a collection asynchronously.
|
||||
@@ -335,6 +345,7 @@ class ChromaDBClient(BaseClient):
|
||||
- content: The text content (required)
|
||||
- doc_id: Optional unique identifier (auto-generated if missing)
|
||||
- metadata: Optional metadata dictionary
|
||||
batch_size: Optional batch size for processing documents (default: 100)
|
||||
|
||||
Raises:
|
||||
TypeError: If ClientAPI is used instead of AsyncClientAPI for async operations.
|
||||
@@ -349,6 +360,7 @@ class ChromaDBClient(BaseClient):
|
||||
|
||||
collection_name = kwargs["collection_name"]
|
||||
documents = kwargs["documents"]
|
||||
batch_size = kwargs.get("batch_size", self.default_batch_size)
|
||||
|
||||
if not documents:
|
||||
raise ValueError("Documents list cannot be empty")
|
||||
@@ -358,13 +370,17 @@ class ChromaDBClient(BaseClient):
|
||||
embedding_function=self.embedding_function,
|
||||
)
|
||||
prepared = _prepare_documents_for_chromadb(documents)
|
||||
# ChromaDB doesn't accept empty metadata dicts, so pass None if all are empty
|
||||
metadatas = prepared.metadatas if any(m for m in prepared.metadatas) else None
|
||||
await collection.upsert(
|
||||
ids=prepared.ids,
|
||||
documents=prepared.texts,
|
||||
metadatas=metadatas,
|
||||
)
|
||||
|
||||
for i in range(0, len(prepared.ids), batch_size):
|
||||
batch_ids, batch_texts, batch_metadatas = _create_batch_slice(
|
||||
prepared=prepared, start_index=i, batch_size=batch_size
|
||||
)
|
||||
|
||||
await collection.upsert(
|
||||
ids=batch_ids,
|
||||
documents=batch_texts,
|
||||
metadatas=batch_metadatas,
|
||||
)
|
||||
|
||||
def search(
|
||||
self, **kwargs: Unpack[ChromaDBCollectionSearchParams]
|
||||
|
||||
@@ -41,4 +41,5 @@ def create_client(config: ChromaDBConfig) -> ChromaDBClient:
|
||||
embedding_function=config.embedding_function,
|
||||
default_limit=config.limit,
|
||||
default_score_threshold=config.score_threshold,
|
||||
default_batch_size=config.batch_size,
|
||||
)
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
"""Utility functions for ChromaDB client implementation."""
|
||||
|
||||
import hashlib
|
||||
import json
|
||||
from collections.abc import Mapping
|
||||
from typing import Literal, TypeGuard, cast
|
||||
|
||||
@@ -72,7 +73,15 @@ def _prepare_documents_for_chromadb(
|
||||
if "doc_id" in doc:
|
||||
ids.append(doc["doc_id"])
|
||||
else:
|
||||
content_hash = hashlib.sha256(doc["content"].encode()).hexdigest()[:16]
|
||||
content_for_hash = doc["content"]
|
||||
metadata = doc.get("metadata")
|
||||
if metadata:
|
||||
metadata_str = json.dumps(metadata, sort_keys=True)
|
||||
content_for_hash = f"{content_for_hash}|{metadata_str}"
|
||||
|
||||
content_hash = hashlib.blake2b(
|
||||
content_for_hash.encode(), digest_size=32
|
||||
).hexdigest()
|
||||
ids.append(content_hash)
|
||||
|
||||
texts.append(doc["content"])
|
||||
@@ -88,6 +97,32 @@ def _prepare_documents_for_chromadb(
|
||||
return PreparedDocuments(ids, texts, metadatas)
|
||||
|
||||
|
||||
def _create_batch_slice(
|
||||
prepared: PreparedDocuments, start_index: int, batch_size: int
|
||||
) -> tuple[list[str], list[str], list[Mapping[str, str | int | float | bool]] | None]:
|
||||
"""Create a batch slice from prepared documents.
|
||||
|
||||
Args:
|
||||
prepared: PreparedDocuments containing ids, texts, and metadatas.
|
||||
start_index: Starting index for the batch.
|
||||
batch_size: Size of the batch.
|
||||
|
||||
Returns:
|
||||
Tuple of (batch_ids, batch_texts, batch_metadatas).
|
||||
"""
|
||||
batch_end = min(start_index + batch_size, len(prepared.ids))
|
||||
batch_ids = prepared.ids[start_index:batch_end]
|
||||
batch_texts = prepared.texts[start_index:batch_end]
|
||||
batch_metadatas = (
|
||||
prepared.metadatas[start_index:batch_end] if prepared.metadatas else None
|
||||
)
|
||||
|
||||
if batch_metadatas and not any(m for m in batch_metadatas):
|
||||
batch_metadatas = None
|
||||
|
||||
return batch_ids, batch_texts, batch_metadatas
|
||||
|
||||
|
||||
def _extract_search_params(
|
||||
kwargs: ChromaDBCollectionSearchParams,
|
||||
) -> ExtractedSearchParams:
|
||||
|
||||
@@ -16,3 +16,4 @@ class BaseRagConfig:
|
||||
embedding_function: Any | None = field(default=None)
|
||||
limit: int = field(default=5)
|
||||
score_threshold: float = field(default=0.6)
|
||||
batch_size: int = field(default=100)
|
||||
|
||||
@@ -29,7 +29,7 @@ class BaseCollectionParams(TypedDict):
|
||||
]
|
||||
|
||||
|
||||
class BaseCollectionAddParams(BaseCollectionParams):
|
||||
class BaseCollectionAddParams(BaseCollectionParams, total=False):
|
||||
"""Parameters for adding documents to a collection.
|
||||
|
||||
Extends BaseCollectionParams with document-specific fields.
|
||||
@@ -37,9 +37,11 @@ class BaseCollectionAddParams(BaseCollectionParams):
|
||||
Attributes:
|
||||
collection_name: The name of the collection to add documents to.
|
||||
documents: List of BaseRecord dictionaries containing document data.
|
||||
batch_size: Optional batch size for processing documents to avoid token limits.
|
||||
"""
|
||||
|
||||
documents: list[BaseRecord]
|
||||
documents: Required[list[BaseRecord]]
|
||||
batch_size: int
|
||||
|
||||
|
||||
class BaseCollectionSearchParams(BaseCollectionParams, total=False):
|
||||
|
||||
@@ -244,4 +244,6 @@ def get_embedding_function(
|
||||
|
||||
_inject_api_key_from_env(provider, config_dict)
|
||||
|
||||
config_dict.pop("batch_size", None)
|
||||
|
||||
return EMBEDDING_PROVIDERS[provider](**config_dict)
|
||||
|
||||
@@ -48,6 +48,7 @@ class QdrantClient(BaseClient):
|
||||
embedding_function: EmbeddingFunction | AsyncEmbeddingFunction,
|
||||
default_limit: int = 5,
|
||||
default_score_threshold: float = 0.6,
|
||||
default_batch_size: int = 100,
|
||||
) -> None:
|
||||
"""Initialize QdrantClient with client and embedding function.
|
||||
|
||||
@@ -56,11 +57,13 @@ class QdrantClient(BaseClient):
|
||||
embedding_function: Embedding function for text to vector conversion.
|
||||
default_limit: Default number of results to return in searches.
|
||||
default_score_threshold: Default minimum score for search results.
|
||||
default_batch_size: Default batch size for adding documents.
|
||||
"""
|
||||
self.client = client
|
||||
self.embedding_function = embedding_function
|
||||
self.default_limit = default_limit
|
||||
self.default_score_threshold = default_score_threshold
|
||||
self.default_batch_size = default_batch_size
|
||||
|
||||
def create_collection(self, **kwargs: Unpack[QdrantCollectionCreateParams]) -> None:
|
||||
"""Create a new collection in Qdrant.
|
||||
@@ -234,6 +237,7 @@ class QdrantClient(BaseClient):
|
||||
Keyword Args:
|
||||
collection_name: The name of the collection to add documents to.
|
||||
documents: List of BaseRecord dicts containing document data.
|
||||
batch_size: Optional batch size for processing documents (default: 100)
|
||||
|
||||
Raises:
|
||||
ValueError: If collection doesn't exist or documents list is empty.
|
||||
@@ -249,6 +253,7 @@ class QdrantClient(BaseClient):
|
||||
|
||||
collection_name = kwargs["collection_name"]
|
||||
documents = kwargs["documents"]
|
||||
batch_size = kwargs.get("batch_size", self.default_batch_size)
|
||||
|
||||
if not documents:
|
||||
raise ValueError("Documents list cannot be empty")
|
||||
@@ -256,19 +261,20 @@ class QdrantClient(BaseClient):
|
||||
if not self.client.collection_exists(collection_name):
|
||||
raise ValueError(f"Collection '{collection_name}' does not exist")
|
||||
|
||||
points = []
|
||||
for doc in documents:
|
||||
if _is_async_embedding_function(self.embedding_function):
|
||||
raise TypeError(
|
||||
"Async embedding function cannot be used with sync add_documents. "
|
||||
"Use aadd_documents instead."
|
||||
)
|
||||
sync_fn = cast(EmbeddingFunction, self.embedding_function)
|
||||
embedding = sync_fn(doc["content"])
|
||||
point = _create_point_from_document(doc, embedding)
|
||||
points.append(point)
|
||||
|
||||
self.client.upsert(collection_name=collection_name, points=points)
|
||||
for i in range(0, len(documents), batch_size):
|
||||
batch_docs = documents[i : min(i + batch_size, len(documents))]
|
||||
points = []
|
||||
for doc in batch_docs:
|
||||
if _is_async_embedding_function(self.embedding_function):
|
||||
raise TypeError(
|
||||
"Async embedding function cannot be used with sync add_documents. "
|
||||
"Use aadd_documents instead."
|
||||
)
|
||||
sync_fn = cast(EmbeddingFunction, self.embedding_function)
|
||||
embedding = sync_fn(doc["content"])
|
||||
point = _create_point_from_document(doc, embedding)
|
||||
points.append(point)
|
||||
self.client.upsert(collection_name=collection_name, points=points)
|
||||
|
||||
async def aadd_documents(self, **kwargs: Unpack[BaseCollectionAddParams]) -> None:
|
||||
"""Add documents with their embeddings to a collection asynchronously.
|
||||
@@ -276,6 +282,7 @@ class QdrantClient(BaseClient):
|
||||
Keyword Args:
|
||||
collection_name: The name of the collection to add documents to.
|
||||
documents: List of BaseRecord dicts containing document data.
|
||||
batch_size: Optional batch size for processing documents (default: 100)
|
||||
|
||||
Raises:
|
||||
ValueError: If collection doesn't exist or documents list is empty.
|
||||
@@ -291,6 +298,7 @@ class QdrantClient(BaseClient):
|
||||
|
||||
collection_name = kwargs["collection_name"]
|
||||
documents = kwargs["documents"]
|
||||
batch_size = kwargs.get("batch_size", self.default_batch_size)
|
||||
|
||||
if not documents:
|
||||
raise ValueError("Documents list cannot be empty")
|
||||
@@ -298,18 +306,19 @@ class QdrantClient(BaseClient):
|
||||
if not await self.client.collection_exists(collection_name):
|
||||
raise ValueError(f"Collection '{collection_name}' does not exist")
|
||||
|
||||
points = []
|
||||
for doc in documents:
|
||||
if _is_async_embedding_function(self.embedding_function):
|
||||
async_fn = cast(AsyncEmbeddingFunction, self.embedding_function)
|
||||
embedding = await async_fn(doc["content"])
|
||||
else:
|
||||
sync_fn = cast(EmbeddingFunction, self.embedding_function)
|
||||
embedding = sync_fn(doc["content"])
|
||||
point = _create_point_from_document(doc, embedding)
|
||||
points.append(point)
|
||||
|
||||
await self.client.upsert(collection_name=collection_name, points=points)
|
||||
for i in range(0, len(documents), batch_size):
|
||||
batch_docs = documents[i : min(i + batch_size, len(documents))]
|
||||
points = []
|
||||
for doc in batch_docs:
|
||||
if _is_async_embedding_function(self.embedding_function):
|
||||
async_fn = cast(AsyncEmbeddingFunction, self.embedding_function)
|
||||
embedding = await async_fn(doc["content"])
|
||||
else:
|
||||
sync_fn = cast(EmbeddingFunction, self.embedding_function)
|
||||
embedding = sync_fn(doc["content"])
|
||||
point = _create_point_from_document(doc, embedding)
|
||||
points.append(point)
|
||||
await self.client.upsert(collection_name=collection_name, points=points)
|
||||
|
||||
def search(
|
||||
self, **kwargs: Unpack[BaseCollectionSearchParams]
|
||||
|
||||
@@ -22,4 +22,5 @@ def create_client(config: QdrantConfig) -> QdrantClient:
|
||||
embedding_function=config.embedding_function,
|
||||
default_limit=config.limit,
|
||||
default_score_threshold=config.score_threshold,
|
||||
default_batch_size=config.batch_size,
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user