docs: add LangDB integration documentation (#3228)

docs: update LangDB links in observability documentation

- Removed references to the AI Gateway features in both English and Portuguese documentation.
- Updated the Model Catalog links to point to the new app.langdb.ai domain.
- Ensured consistency across both language versions of the documentation.
This commit is contained in:
Mrunmay Shelar
2025-08-06 20:43:58 +05:30
committed by GitHub
parent 9f1d7d1aa9
commit 1d9523c98f
7 changed files with 582 additions and 0 deletions

View File

@@ -218,6 +218,7 @@
"en/observability/overview", "en/observability/overview",
"en/observability/agentops", "en/observability/agentops",
"en/observability/arize-phoenix", "en/observability/arize-phoenix",
"en/observability/langdb",
"en/observability/langfuse", "en/observability/langfuse",
"en/observability/langtrace", "en/observability/langtrace",
"en/observability/maxim", "en/observability/maxim",
@@ -555,6 +556,7 @@
"pt-BR/observability/overview", "pt-BR/observability/overview",
"pt-BR/observability/agentops", "pt-BR/observability/agentops",
"pt-BR/observability/arize-phoenix", "pt-BR/observability/arize-phoenix",
"pt-BR/observability/langdb",
"pt-BR/observability/langfuse", "pt-BR/observability/langfuse",
"pt-BR/observability/langtrace", "pt-BR/observability/langtrace",
"pt-BR/observability/maxim", "pt-BR/observability/maxim",

View File

@@ -0,0 +1,286 @@
---
title: LangDB Integration
description: Govern, secure, and optimize your CrewAI workflows with LangDB AI Gateway—access 350+ models, automatic routing, cost optimization, and full observability.
icon: database
---
# Introduction
[LangDB AI Gateway](https://langdb.ai) provides OpenAI-compatible APIs to connect with multiple Large Language Models and serves as an observability platform that makes it effortless to trace CrewAI workflows end-to-end while providing access to 350+ language models. With a single `init()` call, all agent interactions, task executions, and LLM calls are captured, providing comprehensive observability and production-ready AI infrastructure for your applications.
<Frame caption="LangDB CrewAI Trace Example">
<img src="/images/langdb-1.png" alt="LangDB CrewAI trace example" />
</Frame>
**Checkout:** [View the live trace example](https://app.langdb.ai/sharing/threads/3becbfed-a1be-ae84-ea3c-4942867a3e22)
## Features
### AI Gateway Capabilities
- **Access to 350+ LLMs**: Connect to all major language models through a single integration
- **Virtual Models**: Create custom model configurations with specific parameters and routing rules
- **Virtual MCP**: Enable compatibility and integration with MCP (Model Context Protocol) systems for enhanced agent communication
- **Guardrails**: Implement safety measures and compliance controls for agent behavior
### Observability & Tracing
- **Automatic Tracing**: Single `init()` call captures all CrewAI interactions
- **End-to-End Visibility**: Monitor agent workflows from start to finish
- **Tool Usage Tracking**: Track which tools agents use and their outcomes
- **Model Call Monitoring**: Detailed insights into LLM interactions
- **Performance Analytics**: Monitor latency, token usage, and costs
- **Debugging Support**: Step-through execution for troubleshooting
- **Real-time Monitoring**: Live traces and metrics dashboard
## Setup Instructions
<Steps>
<Step title="Install LangDB">
Install the LangDB client with CrewAI feature flag:
```bash
pip install 'pylangdb[crewai]'
```
</Step>
<Step title="Set Environment Variables">
Configure your LangDB credentials:
```bash
export LANGDB_API_KEY="<your_langdb_api_key>"
export LANGDB_PROJECT_ID="<your_langdb_project_id>"
export LANGDB_API_BASE_URL='https://api.us-east-1.langdb.ai'
```
</Step>
<Step title="Initialize Tracing">
Import and initialize LangDB before configuring your CrewAI code:
```python
from pylangdb.crewai import init
# Initialize LangDB
init()
```
</Step>
<Step title="Configure CrewAI with LangDB">
Set up your LLM with LangDB headers:
```python
from crewai import Agent, Task, Crew, LLM
import os
# Configure LLM with LangDB headers
llm = LLM(
model="openai/gpt-4o", # Replace with the model you want to use
api_key=os.getenv("LANGDB_API_KEY"),
base_url=os.getenv("LANGDB_API_BASE_URL"),
extra_headers={"x-project-id": os.getenv("LANGDB_PROJECT_ID")}
)
```
</Step>
</Steps>
## Quick Start Example
Here's a simple example to get you started with LangDB and CrewAI:
```python
import os
from pylangdb.crewai import init
from crewai import Agent, Task, Crew, LLM
# Initialize LangDB before any CrewAI imports
init()
def create_llm(model):
return LLM(
model=model,
api_key=os.environ.get("LANGDB_API_KEY"),
base_url=os.environ.get("LANGDB_API_BASE_URL"),
extra_headers={"x-project-id": os.environ.get("LANGDB_PROJECT_ID")}
)
# Define your agent
researcher = Agent(
role="Research Specialist",
goal="Research topics thoroughly",
backstory="Expert researcher with skills in finding information",
llm=create_llm("openai/gpt-4o"), # Replace with the model you want to use
verbose=True
)
# Create a task
task = Task(
description="Research the given topic and provide a comprehensive summary",
agent=researcher,
expected_output="Detailed research summary with key findings"
)
# Create and run the crew
crew = Crew(agents=[researcher], tasks=[task])
result = crew.kickoff()
print(result)
```
## Complete Example: Research and Planning Agent
This comprehensive example demonstrates a multi-agent workflow with research and planning capabilities.
### Prerequisites
```bash
pip install crewai 'pylangdb[crewai]' crewai_tools setuptools python-dotenv
```
### Environment Setup
```bash
# LangDB credentials
export LANGDB_API_KEY="<your_langdb_api_key>"
export LANGDB_PROJECT_ID="<your_langdb_project_id>"
export LANGDB_API_BASE_URL='https://api.us-east-1.langdb.ai'
# Additional API keys (optional)
export SERPER_API_KEY="<your_serper_api_key>" # For web search capabilities
```
### Complete Implementation
```python
#!/usr/bin/env python3
import os
import sys
from pylangdb.crewai import init
init() # Initialize LangDB before any CrewAI imports
from dotenv import load_dotenv
from crewai import Agent, Task, Crew, Process, LLM
from crewai_tools import SerperDevTool
load_dotenv()
def create_llm(model):
return LLM(
model=model,
api_key=os.environ.get("LANGDB_API_KEY"),
base_url=os.environ.get("LANGDB_API_BASE_URL"),
extra_headers={"x-project-id": os.environ.get("LANGDB_PROJECT_ID")}
)
class ResearchPlanningCrew:
def researcher(self) -> Agent:
return Agent(
role="Research Specialist",
goal="Research topics thoroughly and compile comprehensive information",
backstory="Expert researcher with skills in finding and analyzing information from various sources",
tools=[SerperDevTool()],
llm=create_llm("openai/gpt-4o"),
verbose=True
)
def planner(self) -> Agent:
return Agent(
role="Strategic Planner",
goal="Create actionable plans based on research findings",
backstory="Strategic planner who breaks down complex challenges into executable plans",
reasoning=True,
max_reasoning_attempts=3,
llm=create_llm("openai/anthropic/claude-3.7-sonnet"),
verbose=True
)
def research_task(self) -> Task:
return Task(
description="Research the topic thoroughly and compile comprehensive information",
agent=self.researcher(),
expected_output="Comprehensive research report with key findings and insights"
)
def planning_task(self) -> Task:
return Task(
description="Create a strategic plan based on the research findings",
agent=self.planner(),
expected_output="Strategic execution plan with phases, goals, and actionable steps",
context=[self.research_task()]
)
def crew(self) -> Crew:
return Crew(
agents=[self.researcher(), self.planner()],
tasks=[self.research_task(), self.planning_task()],
verbose=True,
process=Process.sequential
)
def main():
topic = sys.argv[1] if len(sys.argv) > 1 else "Artificial Intelligence in Healthcare"
crew_instance = ResearchPlanningCrew()
# Update task descriptions with the specific topic
crew_instance.research_task().description = f"Research {topic} thoroughly and compile comprehensive information"
crew_instance.planning_task().description = f"Create a strategic plan for {topic} based on the research findings"
result = crew_instance.crew().kickoff()
print(result)
if __name__ == "__main__":
main()
```
### Running the Example
```bash
python main.py "Sustainable Energy Solutions"
```
## Viewing Traces in LangDB
After running your CrewAI application, you can view detailed traces in the LangDB dashboard:
<Frame caption="LangDB Trace Dashboard">
<img src="/images/langdb-2.png" alt="LangDB trace dashboard showing CrewAI workflow" />
</Frame>
### What You'll See
- **Agent Interactions**: Complete flow of agent conversations and task handoffs
- **Tool Usage**: Which tools were called, their inputs, and outputs
- **Model Calls**: Detailed LLM interactions with prompts image.pngand responses
- **Performance Metrics**: Latency, token usage, and cost tracking
- **Execution Timeline**: Step-by-step view of the entire workflow
## Troubleshooting
### Common Issues
- **No traces appearing**: Ensure `init()` is called before any CrewAI imports
- **Authentication errors**: Verify your LangDB API key and project ID
## Resources
<CardGroup cols={3}>
<Card title="LangDB Documentation" icon="book" href="https://docs.langdb.ai">
Official LangDB documentation and guides
</Card>
<Card title="LangDB Guides" icon="graduation-cap" href="https://docs.langdb.ai/guides">
Step-by-step tutorials for building AI agents
</Card>
<Card title="GitHub Examples" icon="github" href="https://github.com/langdb/langdb-samples/tree/main/examples/crewai" >
Complete CrewAI integration examples
</Card>
<Card title="LangDB Dashboard" icon="chart-line" href="https://app.langdb.ai">
Access your traces and analytics
</Card>
<Card title="Model Catalog" icon="list" href="https://app.langdb.ai/models">
Browse 350+ available language models
</Card>
<Card title="Enterprise Features" icon="building" href="https://docs.langdb.ai/enterprise">
Self-hosted options and enterprise capabilities
</Card>
</CardGroup>
## Next Steps
This guide covered the basics of integrating LangDB AI Gateway with CrewAI. To further enhance your AI workflows, explore:
- **Virtual Models**: Create custom model configurations with routing strategies
- **Guardrails & Safety**: Implement content filtering and compliance controls
- **Production Deployment**: Configure fallbacks, retries, and load balancing
For more advanced features and use cases, visit the [LangDB Documentation](https://docs.langdb.ai) or explore the [Model Catalog](https://app.langdb.ai/models) to discover all available models.

View File

@@ -25,6 +25,10 @@ Observability is crucial for understanding how your CrewAI agents perform, ident
Session replays, metrics, and monitoring for agent development and production. Session replays, metrics, and monitoring for agent development and production.
</Card> </Card>
<Card title="LangDB" icon="database" href="/en/observability/langdb">
End-to-end tracing for CrewAI workflows with automatic agent interaction capture.
</Card>
<Card title="OpenLIT" icon="magnifying-glass-chart" href="/en/observability/openlit"> <Card title="OpenLIT" icon="magnifying-glass-chart" href="/en/observability/openlit">
OpenTelemetry-native monitoring with cost tracking and performance analytics. OpenTelemetry-native monitoring with cost tracking and performance analytics.
</Card> </Card>

BIN
docs/images/langdb-1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 127 KiB

BIN
docs/images/langdb-2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 117 KiB

View File

@@ -0,0 +1,286 @@
---
title: Integração LangDB
description: Governe, proteja e otimize seus fluxos de trabalho CrewAI com LangDB AI Gateway—acesse mais de 350 modelos, roteamento automático, otimização de custos e observabilidade completa.
icon: database
---
# Introdução
[LangDB AI Gateway](https://langdb.ai) fornece APIs compatíveis com OpenAI para conectar com múltiplos Modelos de Linguagem Grandes e serve como uma plataforma de observabilidade que torna effortless rastrear fluxos de trabalho CrewAI de ponta a ponta, proporcionando acesso a mais de 350 modelos de linguagem. Com uma única chamada `init()`, todas as interações de agentes, execuções de tarefas e chamadas LLM são capturadas, fornecendo observabilidade abrangente e infraestrutura de IA pronta para produção para suas aplicações.
<Frame caption="Exemplo de Rastreamento CrewAI LangDB">
<img src="/images/langdb-1.png" alt="Exemplo de rastreamento CrewAI LangDB" />
</Frame>
**Confira:** [Ver o exemplo de trace ao vivo](https://app.langdb.ai/sharing/threads/3becbfed-a1be-ae84-ea3c-4942867a3e22)
## Recursos
### Capacidades do AI Gateway
- **Acesso a mais de 350 LLMs**: Conecte-se a todos os principais modelos de linguagem através de uma única integração
- **Modelos Virtuais**: Crie configurações de modelo personalizadas com parâmetros específicos e regras de roteamento
- **MCP Virtual**: Habilite compatibilidade e integração com sistemas MCP (Model Context Protocol) para comunicação aprimorada de agentes
- **Guardrails**: Implemente medidas de segurança e controles de conformidade para comportamento de agentes
### Observabilidade e Rastreamento
- **Rastreamento Automático**: Uma única chamada `init()` captura todas as interações CrewAI
- **Visibilidade Ponta a Ponta**: Monitore fluxos de trabalho de agentes do início ao fim
- **Rastreamento de Uso de Ferramentas**: Rastreie quais ferramentas os agentes usam e seus resultados
- **Monitoramento de Chamadas de Modelo**: Insights detalhados sobre interações LLM
- **Análise de Performance**: Monitore latência, uso de tokens e custos
- **Suporte a Depuração**: Execução passo a passo para solução de problemas
- **Monitoramento em Tempo Real**: Dashboard de traces e métricas ao vivo
## Instruções de Configuração
<Steps>
<Step title="Instalar LangDB">
Instale o cliente LangDB com flag de recurso CrewAI:
```bash
pip install 'pylangdb[crewai]'
```
</Step>
<Step title="Definir Variáveis de Ambiente">
Configure suas credenciais LangDB:
```bash
export LANGDB_API_KEY="<sua_chave_api_langdb>"
export LANGDB_PROJECT_ID="<seu_id_projeto_langdb>"
export LANGDB_API_BASE_URL='https://api.us-east-1.langdb.ai'
```
</Step>
<Step title="Inicializar Rastreamento">
Importe e inicialize LangDB antes de configurar seu código CrewAI:
```python
from pylangdb.crewai import init
# Inicializar LangDB
init()
```
</Step>
<Step title="Configurar CrewAI com LangDB">
Configure seu LLM com cabeçalhos LangDB:
```python
from crewai import Agent, Task, Crew, LLM
import os
# Configurar LLM com cabeçalhos LangDB
llm = LLM(
model="openai/gpt-4o", # Substitua pelo modelo que você quer usar
api_key=os.getenv("LANGDB_API_KEY"),
base_url=os.getenv("LANGDB_API_BASE_URL"),
extra_headers={"x-project-id": os.getenv("LANGDB_PROJECT_ID")}
)
```
</Step>
</Steps>
## Exemplo de Início Rápido
Aqui está um exemplo simples para começar com LangDB e CrewAI:
```python
import os
from pylangdb.crewai import init
from crewai import Agent, Task, Crew, LLM
# Inicializar LangDB antes de qualquer importação CrewAI
init()
def create_llm(model):
return LLM(
model=model,
api_key=os.environ.get("LANGDB_API_KEY"),
base_url=os.environ.get("LANGDB_API_BASE_URL"),
extra_headers={"x-project-id": os.environ.get("LANGDB_PROJECT_ID")}
)
# Defina seu agente
researcher = Agent(
role="Especialista em Pesquisa",
goal="Pesquisar tópicos minuciosamente",
backstory="Pesquisador especialista com habilidades em encontrar informações",
llm=create_llm("openai/gpt-4o"), # Substitua pelo modelo que você quer usar
verbose=True
)
# Criar uma tarefa
task = Task(
description="Pesquise o tópico dado e forneça um resumo abrangente",
agent=researcher,
expected_output="Resumo de pesquisa detalhado com principais descobertas"
)
# Criar e executar a equipe
crew = Crew(agents=[researcher], tasks=[task])
result = crew.kickoff()
print(result)
```
## Exemplo Completo: Agente de Pesquisa e Planejamento
Este exemplo abrangente demonstra um fluxo de trabalho multi-agente com capacidades de pesquisa e planejamento.
### Pré-requisitos
```bash
pip install crewai 'pylangdb[crewai]' crewai_tools setuptools python-dotenv
```
### Configuração do Ambiente
```bash
# Credenciais LangDB
export LANGDB_API_KEY="<sua_chave_api_langdb>"
export LANGDB_PROJECT_ID="<seu_id_projeto_langdb>"
export LANGDB_API_BASE_URL='https://api.us-east-1.langdb.ai'
# Chaves API adicionais (opcional)
export SERPER_API_KEY="<sua_chave_api_serper>" # Para capacidades de busca na web
```
### Implementação Completa
```python
#!/usr/bin/env python3
import os
import sys
from pylangdb.crewai import init
init() # Inicializar LangDB antes de qualquer importação CrewAI
from dotenv import load_dotenv
from crewai import Agent, Task, Crew, Process, LLM
from crewai_tools import SerperDevTool
load_dotenv()
def create_llm(model):
return LLM(
model=model,
api_key=os.environ.get("LANGDB_API_KEY"),
base_url=os.environ.get("LANGDB_API_BASE_URL"),
extra_headers={"x-project-id": os.environ.get("LANGDB_PROJECT_ID")}
)
class ResearchPlanningCrew:
def researcher(self) -> Agent:
return Agent(
role="Especialista em Pesquisa",
goal="Pesquisar tópicos minuciosamente e compilar informações abrangentes",
backstory="Pesquisador especialista com habilidades em encontrar e analisar informações de várias fontes",
tools=[SerperDevTool()],
llm=create_llm("openai/gpt-4o"),
verbose=True
)
def planner(self) -> Agent:
return Agent(
role="Planejador Estratégico",
goal="Criar planos acionáveis baseados em descobertas de pesquisa",
backstory="Planejador estratégico que divide desafios complexos em planos executáveis",
reasoning=True,
max_reasoning_attempts=3,
llm=create_llm("openai/anthropic/claude-3.7-sonnet"),
verbose=True
)
def research_task(self) -> Task:
return Task(
description="Pesquise o tópico minuciosamente e compile informações abrangentes",
agent=self.researcher(),
expected_output="Relatório de pesquisa abrangente com principais descobertas e insights"
)
def planning_task(self) -> Task:
return Task(
description="Crie um plano estratégico baseado nas descobertas da pesquisa",
agent=self.planner(),
expected_output="Plano de execução estratégica com fases, objetivos e etapas acionáveis",
context=[self.research_task()]
)
def crew(self) -> Crew:
return Crew(
agents=[self.researcher(), self.planner()],
tasks=[self.research_task(), self.planning_task()],
verbose=True,
process=Process.sequential
)
def main():
topic = sys.argv[1] if len(sys.argv) > 1 else "Inteligência Artificial na Saúde"
crew_instance = ResearchPlanningCrew()
# Atualizar descrições de tarefas com o tópico específico
crew_instance.research_task().description = f"Pesquise {topic} minuciosamente e compile informações abrangentes"
crew_instance.planning_task().description = f"Crie um plano estratégico para {topic} baseado nas descobertas da pesquisa"
result = crew_instance.crew().kickoff()
print(result)
if __name__ == "__main__":
main()
```
### Executando o Exemplo
```bash
python main.py "Soluções de Energia Sustentável"
```
## Visualizando Traces no LangDB
Após executar sua aplicação CrewAI, você pode visualizar traces detalhados no dashboard LangDB:
<Frame caption="Dashboard de Trace LangDB">
<img src="/images/langdb-2.png" alt="Dashboard de trace LangDB mostrando fluxo de trabalho CrewAI" />
</Frame>
### O Que Você Verá
- **Interações de Agentes**: Fluxo completo de conversas de agentes e transferências de tarefas
- **Uso de Ferramentas**: Quais ferramentas foram chamadas, suas entradas e saídas
- **Chamadas de Modelo**: Interações LLM detalhadas com prompts e respostas
- **Métricas de Performance**: Rastreamento de latência, uso de tokens e custos
- **Linha do Tempo de Execução**: Visualização passo a passo de todo o fluxo de trabalho
## Solução de Problemas
### Problemas Comuns
- **Nenhum trace aparecendo**: Certifique-se de que `init()` seja chamado antes de qualquer importação CrewAI
- **Erros de autenticação**: Verifique sua chave API LangDB e ID do projeto
## Recursos
<CardGroup cols={3}>
<Card title="Documentação LangDB" icon="book" href="https://docs.langdb.ai">
Documentação oficial e guias LangDB
</Card>
<Card title="Guias LangDB" icon="graduation-cap" href="https://docs.langdb.ai/guides">
Tutoriais passo a passo para construir agentes de IA
</Card>
<Card title="Exemplos GitHub" icon="github" href="https://github.com/langdb/langdb-samples/tree/main/examples/crewai" >
Exemplos completos de integração CrewAI
</Card>
<Card title="Dashboard LangDB" icon="chart-line" href="https://app.langdb.ai">
Acesse seus traces e análises
</Card>
<Card title="Catálogo de Modelos" icon="list" href="https://app.langdb.ai/models">
Navegue por mais de 350 modelos de linguagem disponíveis
</Card>
<Card title="Recursos Enterprise" icon="building" href="https://docs.langdb.ai/enterprise">
Opções auto-hospedadas e capacidades empresariais
</Card>
</CardGroup>
## Próximos Passos
Este guia cobriu o básico da integração do LangDB AI Gateway com CrewAI. Para aprimorar ainda mais seus fluxos de trabalho de IA, explore:
- **Modelos Virtuais**: Crie configurações de modelo personalizadas com estratégias de roteamento
- **Guardrails e Segurança**: Implemente filtragem de conteúdo e controles de conformidade
- **Implantação em Produção**: Configure fallbacks, tentativas e balanceamento de carga
Para recursos mais avançados e casos de uso, visite a [Documentação LangDB](https://docs.langdb.ai) ou explore o [Catálogo de Modelos](https://app.langdb.ai/models) para descobrir todos os modelos disponíveis.

View File

@@ -25,6 +25,10 @@ A observabilidade é fundamental para entender como seus agentes CrewAI estão d
Replays de sessões, métricas e monitoramento para desenvolvimento e produção de agentes. Replays de sessões, métricas e monitoramento para desenvolvimento e produção de agentes.
</Card> </Card>
<Card title="LangDB" icon="database" href="/pt-BR/observability/langdb">
Rastreamento ponta a ponta para fluxos de trabalho CrewAI com captura automática de interações de agentes.
</Card>
<Card title="OpenLIT" icon="magnifying-glass-chart" href="/pt-BR/observability/openlit"> <Card title="OpenLIT" icon="magnifying-glass-chart" href="/pt-BR/observability/openlit">
Monitoramento nativo OpenTelemetry com rastreamento de custos e análises de desempenho. Monitoramento nativo OpenTelemetry com rastreamento de custos e análises de desempenho.
</Card> </Card>