mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-22 22:58:13 +00:00
Adding core knowledge sources
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any, Dict, List
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
|
||||
@@ -7,7 +7,7 @@ from crewai.knowledge.embedder.base_embedder import BaseEmbedder
|
||||
|
||||
|
||||
class BaseKnowledgeSource(ABC):
|
||||
"""Abstract base class for knowledge bases"""
|
||||
"""Abstract base class for knowledge sources."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@@ -17,96 +17,25 @@ class BaseKnowledgeSource(ABC):
|
||||
self.chunk_size = chunk_size
|
||||
self.chunk_overlap = chunk_overlap
|
||||
self.chunks: List[str] = []
|
||||
self.chunk_embeddings: Dict[int, np.ndarray] = {}
|
||||
self.chunk_embeddings: List[np.ndarray] = []
|
||||
|
||||
@abstractmethod
|
||||
def query(self, query: str) -> str:
|
||||
"""Query the knowledge base and return relevant information"""
|
||||
def load_content(self):
|
||||
"""Load and preprocess content from the source."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def add(self, content: Any) -> None:
|
||||
"""Process and store content in the knowledge base"""
|
||||
def add(self, embedder: BaseEmbedder) -> None:
|
||||
"""Process content, chunk it, compute embeddings, and save them."""
|
||||
pass
|
||||
|
||||
def embed(self, embedder: BaseEmbedder, new_chunks: List[str]) -> None:
|
||||
"""Embed chunks and store them"""
|
||||
if not new_chunks:
|
||||
return
|
||||
|
||||
# Get embeddings for new chunks
|
||||
embeddings = embedder.embed_texts(new_chunks)
|
||||
|
||||
# Store embeddings with their corresponding chunks
|
||||
start_idx = len(self.chunks)
|
||||
for i, embedding in enumerate(embeddings):
|
||||
self.chunk_embeddings[start_idx + i] = embedding
|
||||
def get_embeddings(self) -> List[np.ndarray]:
|
||||
"""Return the list of embeddings for the chunks."""
|
||||
return self.chunk_embeddings
|
||||
|
||||
def _chunk_text(self, text: str) -> List[str]:
|
||||
"""Split text into chunks with overlap"""
|
||||
chunks = []
|
||||
start = 0
|
||||
text_length = len(text)
|
||||
|
||||
while start < text_length:
|
||||
# Get the chunk of size chunk_size
|
||||
end = start + self.chunk_size
|
||||
|
||||
if end >= text_length:
|
||||
# If we're at the end, just take the rest
|
||||
chunks.append(text[start:].strip())
|
||||
break
|
||||
|
||||
# Look for a good breaking point
|
||||
# Priority: double newline > single newline > period > space
|
||||
break_chars = ["\n\n", "\n", ". ", " "]
|
||||
chunk_end = end
|
||||
|
||||
for break_char in break_chars:
|
||||
# Look for the break_char in a window around the end point
|
||||
window_start = max(start + self.chunk_size - 100, start)
|
||||
window_end = min(start + self.chunk_size + 100, text_length)
|
||||
window_text = text[window_start:window_end]
|
||||
|
||||
# Find the last occurrence of the break_char in the window
|
||||
last_break = window_text.rfind(break_char)
|
||||
if last_break != -1:
|
||||
chunk_end = window_start + last_break + len(break_char)
|
||||
break
|
||||
|
||||
# Add the chunk
|
||||
chunk = text[start:chunk_end].strip()
|
||||
if chunk: # Only add non-empty chunks
|
||||
chunks.append(chunk)
|
||||
|
||||
# Move the start pointer, accounting for overlap
|
||||
start = max(
|
||||
start + self.chunk_size - self.chunk_overlap,
|
||||
chunk_end - self.chunk_overlap,
|
||||
)
|
||||
|
||||
return chunks
|
||||
|
||||
def _find_similar_chunks(
|
||||
self, embedder: BaseEmbedder, query: str, top_k: int = 3
|
||||
) -> List[str]:
|
||||
"""Find the most similar chunks to a query using embeddings"""
|
||||
if not self.chunks:
|
||||
return []
|
||||
|
||||
# Get query embedding
|
||||
query_embedding = embedder.embed_text(query)
|
||||
|
||||
# Calculate similarities with all chunks
|
||||
similarities = []
|
||||
for idx, chunk_embedding in self.chunk_embeddings.items():
|
||||
similarity = np.dot(query_embedding, chunk_embedding)
|
||||
similarities.append((similarity, idx))
|
||||
|
||||
# Sort by similarity and get top_k chunks
|
||||
similarities.sort(reverse=True)
|
||||
top_chunks = []
|
||||
for _, idx in similarities[:top_k]:
|
||||
top_chunks.append(self.chunks[idx])
|
||||
|
||||
return top_chunks
|
||||
"""Utility method to split text into chunks."""
|
||||
return [
|
||||
text[i : i + self.chunk_size]
|
||||
for i in range(0, len(text), self.chunk_size - self.chunk_overlap)
|
||||
]
|
||||
|
||||
Reference in New Issue
Block a user