mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-10 00:28:31 +00:00
Merge branch 'bugfix/langchain-tool-config-change' into feature/procedure_v2
This commit is contained in:
112
docs/core-concepts/Procedure.md
Normal file
112
docs/core-concepts/Procedure.md
Normal file
@@ -0,0 +1,112 @@
|
||||
---
|
||||
title: crewAI Procedures
|
||||
description: Understanding and utilizing procedures in the crewAI framework for sequential execution of multiple crews.
|
||||
---
|
||||
|
||||
## What is a Procedure?
|
||||
|
||||
A procedure in crewAI represents a sequence of crews that are executed one after another. It allows for the chaining of multiple crews, where the output of one crew becomes the input for the next, enabling complex, multi-stage workflows.
|
||||
|
||||
## Procedure Attributes
|
||||
|
||||
| Attribute | Parameters | Description |
|
||||
| :-------- | :--------- | :------------------------------------------ |
|
||||
| **Crews** | `crews` | A list of crews to be executed in sequence. |
|
||||
|
||||
## Working with Procedures
|
||||
|
||||
The following example demonstrates how to create, execute, and work with Procedures:
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
from crewai import Agent, Task, Crew, Procedure
|
||||
from crewai.crews.crew_output import CrewOutput
|
||||
|
||||
# Define agents
|
||||
researcher = Agent(
|
||||
role='Senior Research Analyst',
|
||||
goal='Discover innovative AI technologies',
|
||||
backstory="You're a senior research analyst specializing in AI trends.",
|
||||
)
|
||||
|
||||
writer = Agent(
|
||||
role='Content Writer',
|
||||
goal='Write engaging articles on AI discoveries',
|
||||
backstory="You're a senior writer specializing in AI content.",
|
||||
)
|
||||
|
||||
# Define tasks for each crew
|
||||
research_task = Task(
|
||||
description='Identify breakthrough AI technologies',
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
write_task = Task(
|
||||
description='Draft an article on the latest AI technologies',
|
||||
agent=writer
|
||||
)
|
||||
|
||||
# Create crews
|
||||
research_crew = Crew(
|
||||
agents=[researcher],
|
||||
tasks=[research_task],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
writing_crew = Crew(
|
||||
agents=[writer],
|
||||
tasks=[write_task],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Create a procedure
|
||||
procedure = research_crew >> writing_crew
|
||||
|
||||
# Alternative way to create a procedure
|
||||
# procedure = Procedure(crews=[research_crew, writing_crew])
|
||||
|
||||
# Function to run the procedure
|
||||
async def run_procedure():
|
||||
inputs = [
|
||||
{"topic": "AI in healthcare"},
|
||||
{"topic": "AI in finance"}
|
||||
]
|
||||
results = await procedure.kickoff(inputs)
|
||||
return results
|
||||
|
||||
# Execute the procedure and process results
|
||||
async def main():
|
||||
results = await run_procedure()
|
||||
|
||||
for i, result in enumerate(results):
|
||||
print(f"\nResult {i + 1}:")
|
||||
|
||||
# Access raw output
|
||||
print("Raw output:", result.raw)
|
||||
|
||||
# Access JSON output (if available)
|
||||
if result.json_dict:
|
||||
print("JSON output:", result.json_dict)
|
||||
|
||||
# Access Pydantic model output (if available)
|
||||
if result.pydantic:
|
||||
print("Pydantic output:", result.pydantic)
|
||||
|
||||
# Access individual task outputs
|
||||
for j, task_output in enumerate(result.tasks_output):
|
||||
print(f"Task {j + 1} output:", task_output.raw)
|
||||
|
||||
# Access token usage
|
||||
print("Token usage:", result.token_usage)
|
||||
|
||||
# Convert result to dictionary
|
||||
result_dict = result.to_dict()
|
||||
print("Result as dictionary:", result_dict)
|
||||
|
||||
# String representation of the result
|
||||
print("String representation:", str(result))
|
||||
|
||||
# Run the main function
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
```
|
||||
Reference in New Issue
Block a user