implementing initial LLM class

This commit is contained in:
João Moura
2024-09-22 22:37:29 -03:00
parent 000e2666fb
commit 18c3925fa3
15 changed files with 2217 additions and 47 deletions

View File

@@ -51,6 +51,50 @@ def test_custom_llm_with_langchain():
assert agent.llm == "gpt-4"
def test_custom_llm_temperature_preservation():
from langchain_openai import ChatOpenAI
langchain_llm = ChatOpenAI(temperature=0.7, model="gpt-4")
agent = Agent(
role="temperature test role",
goal="temperature test goal",
backstory="temperature test backstory",
llm=langchain_llm,
)
assert isinstance(agent.llm, LLM)
assert agent.llm.model == "gpt-4"
assert agent.llm.temperature == 0.7
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_execute_task():
from langchain_openai import ChatOpenAI
from crewai import Task
agent = Agent(
role="Math Tutor",
goal="Solve math problems accurately",
backstory="You are an experienced math tutor with a knack for explaining complex concepts simply.",
llm=ChatOpenAI(temperature=0.7, model="gpt-4o-mini"),
)
task = Task(
description="Calculate the area of a circle with radius 5 cm.",
expected_output="The calculated area of the circle in square centimeters.",
agent=agent,
)
result = agent.execute_task(task)
assert result is not None
assert (
"The area of a circle with a radius of 5 cm is calculated using the formula A = πr^2, where A is the area and r is the...in the values, we get A = π*5^2 = 25π square centimeters. Therefore, the area of the circle is 25π square centimeters."
in result
)
assert "square centimeters" in result.lower()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_execution():
agent = Agent(
@@ -67,7 +111,7 @@ def test_agent_execution():
)
output = agent.execute_task(task)
assert output == "1 + 1 = 2"
assert output == "The result of the math operation 1 + 1 is 2."
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -182,7 +226,7 @@ def test_cache_hitting():
task = Task(
description="What is 2 times 6? Ignore correctness and just return the result of the multiplication tool, you must use the tool.",
agent=agent,
expected_output="The number that is the result of the multiplication.",
expected_output="The number that is the result of the multiplication tool.",
)
output = agent.execute_task(task)
assert output == "0"
@@ -1102,6 +1146,88 @@ def test_agent_max_retry_limit():
)
def test_agent_with_llm():
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
llm=LLM(model="gpt-3.5-turbo", temperature=0.7),
)
assert isinstance(agent.llm, LLM)
assert agent.llm.model == "gpt-3.5-turbo"
assert agent.llm.temperature == 0.7
def test_agent_with_custom_stop_words():
stop_words = ["STOP", "END"]
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
llm=LLM(model="gpt-3.5-turbo", stop=stop_words),
)
assert isinstance(agent.llm, LLM)
assert agent.llm.stop == stop_words
def test_agent_with_callbacks():
def dummy_callback(response):
pass
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
llm=LLM(model="gpt-3.5-turbo", callbacks=[dummy_callback]),
)
assert isinstance(agent.llm, LLM)
assert len(agent.llm.callbacks) == 1
assert agent.llm.callbacks[0] == dummy_callback
def test_agent_with_additional_kwargs():
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
llm=LLM(
model="gpt-3.5-turbo",
temperature=0.8,
top_p=0.9,
presence_penalty=0.1,
frequency_penalty=0.1,
),
)
assert isinstance(agent.llm, LLM)
assert agent.llm.model == "gpt-3.5-turbo"
assert agent.llm.temperature == 0.8
assert agent.llm.top_p == 0.9
assert agent.llm.presence_penalty == 0.1
assert agent.llm.frequency_penalty == 0.1
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_call():
llm = LLM(model="gpt-3.5-turbo")
messages = [{"role": "user", "content": "Say 'Hello, World!'"}]
response = llm.call(messages)
assert "Hello, World!" in response
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_call_with_error():
llm = LLM(model="non-existent-model")
messages = [{"role": "user", "content": "This should fail"}]
with pytest.raises(Exception):
llm.call(messages)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_handle_context_length_exceeds_limit():
agent = Agent(
@@ -1172,3 +1298,213 @@ def test_handle_context_length_exceeds_limit_cli_no():
CrewAgentExecutor, "_handle_context_length"
) as mock_handle_context:
mock_handle_context.assert_not_called()
def test_agent_with_all_llm_attributes():
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
llm=LLM(
model="gpt-3.5-turbo",
timeout=10,
temperature=0.7,
top_p=0.9,
n=1,
stop=["STOP", "END"],
max_tokens=100,
presence_penalty=0.1,
frequency_penalty=0.1,
logit_bias={50256: -100}, # Example: bias against the EOT token
response_format={"type": "json_object"},
seed=42,
logprobs=True,
top_logprobs=5,
base_url="https://api.openai.com/v1",
api_version="2023-05-15",
api_key="sk-your-api-key-here",
),
)
assert isinstance(agent.llm, LLM)
assert agent.llm.model == "gpt-3.5-turbo"
assert agent.llm.timeout == 10
assert agent.llm.temperature == 0.7
assert agent.llm.top_p == 0.9
assert agent.llm.n == 1
assert agent.llm.stop == ["STOP", "END"]
assert agent.llm.max_tokens == 100
assert agent.llm.presence_penalty == 0.1
assert agent.llm.frequency_penalty == 0.1
assert agent.llm.logit_bias == {50256: -100}
assert agent.llm.response_format == {"type": "json_object"}
assert agent.llm.seed == 42
assert agent.llm.logprobs
assert agent.llm.top_logprobs == 5
assert agent.llm.base_url == "https://api.openai.com/v1"
assert agent.llm.api_version == "2023-05-15"
assert agent.llm.api_key == "sk-your-api-key-here"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_call_with_all_attributes():
llm = LLM(
model="gpt-3.5-turbo",
temperature=0.7,
max_tokens=50,
stop=["STOP"],
presence_penalty=0.1,
frequency_penalty=0.1,
)
messages = [{"role": "user", "content": "Say 'Hello, World!' and then say STOP"}]
response = llm.call(messages)
assert "Hello, World!" in response
assert "STOP" not in response
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_with_ollama_gemma():
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
llm=LLM(
model="ollama/gemma2:latest",
base_url="http://localhost:8080",
),
)
assert isinstance(agent.llm, LLM)
assert agent.llm.model == "ollama/gemma2:latest"
assert agent.llm.base_url == "http://localhost:8080"
task = "Respond in 20 words. Who are you?"
response = agent.llm.call([{"role": "user", "content": task}])
assert response
assert len(response.split()) <= 25 # Allow a little flexibility in word count
assert "Gemma" in response or "AI" in response or "language model" in response
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_call_with_ollama_gemma():
llm = LLM(
model="ollama/gemma2:latest",
base_url="http://localhost:8080",
temperature=0.7,
max_tokens=30,
)
messages = [{"role": "user", "content": "Respond in 20 words. Who are you?"}]
response = llm.call(messages)
assert response
assert len(response.split()) <= 25 # Allow a little flexibility in word count
assert "Gemma" in response or "AI" in response or "language model" in response
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_execute_task_basic():
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
llm=LLM(model="gpt-3.5-turbo"),
)
task = Task(
description="Calculate 2 + 2",
expected_output="The result of the calculation",
agent=agent,
)
result = agent.execute_task(task)
assert "4" in result
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_execute_task_with_context():
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
llm=LLM(model="gpt-3.5-turbo"),
)
task = Task(
description="Summarize the given context in one sentence",
expected_output="A one-sentence summary",
agent=agent,
)
context = "The quick brown fox jumps over the lazy dog. This sentence contains every letter of the alphabet."
result = agent.execute_task(task, context=context)
assert len(result.split(".")) == 3
assert "fox" in result.lower() and "dog" in result.lower()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_execute_task_with_tool():
@tool
def dummy_tool(query: str) -> str:
"""Useful for when you need to get a dummy result for a query."""
return f"Dummy result for: {query}"
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
llm=LLM(model="gpt-3.5-turbo"),
tools=[dummy_tool],
)
task = Task(
description="Use the dummy tool to get a result for 'test query'",
expected_output="The result from the dummy tool",
agent=agent,
)
result = agent.execute_task(task)
assert "Dummy result for: test query" in result
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_execute_task_with_custom_llm():
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
llm=LLM(model="gpt-3.5-turbo", temperature=0.7, max_tokens=50),
)
task = Task(
description="Write a haiku about AI",
expected_output="A haiku (3 lines, 5-7-5 syllable pattern) about AI",
agent=agent,
)
result = agent.execute_task(task)
assert len(result.split("\n")) == 3
assert "AI" in result or "artificial intelligence" in result.lower()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_execute_task_with_ollama():
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
llm=LLM(model="ollama/gemma2:latest", base_url="http://localhost:8080"),
)
task = Task(
description="Explain what AI is in one sentence",
expected_output="A one-sentence explanation of AI",
agent=agent,
)
result = agent.execute_task(task)
assert len(result.split(".")) == 2
assert "AI" in result or "artificial intelligence" in result.lower()