mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-27 17:18:13 +00:00
Add Patronus evaluator docs
This commit is contained in:
64
docs/tools/patronusevaltool.mdx
Normal file
64
docs/tools/patronusevaltool.mdx
Normal file
@@ -0,0 +1,64 @@
|
|||||||
|
|
||||||
|
---
|
||||||
|
title: Patronus Eval Tool
|
||||||
|
description: The `PatronusEvalTool` is designed to evaluate agent inputs, outputs and context with a contextually selected criteria and log results to app.patronus.ai
|
||||||
|
icon: shield
|
||||||
|
---
|
||||||
|
|
||||||
|
# `PatronusEvalTool`
|
||||||
|
|
||||||
|
## Description
|
||||||
|
|
||||||
|
The `PatronusEvalTool` is designed to evaluate agent inputs, outputs and context with a contextually selected criteria and log results to [app.patronus.ai](https://app.patronus.ai)
|
||||||
|
It utilizes the [Patronus AI](https://patronus.ai/) API to
|
||||||
|
1. Fetch all available criteria for the specific user associated with the `PATRONUS_API_KEY`
|
||||||
|
2. Select the most fitting criteria for the task according to the defined `Task`
|
||||||
|
3. Evaluates the inputs/outputs/context according to the selected list of criteria and logs them to [app.patronus.ai](https://app.patronus.ai)
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
|
||||||
|
To incorporate this tool into your project, follow the installation instructions below:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
pip install 'crewai[tools]'
|
||||||
|
```
|
||||||
|
|
||||||
|
## Steps to Get Started
|
||||||
|
|
||||||
|
Follow these steps correctly to use the PatronusEvalTool :
|
||||||
|
|
||||||
|
1. Confirm that the `crewai[tools]` package is installed in your Python environment.
|
||||||
|
2. Acquire a Patronus API key by registering for a free account at [patronus.ai](https://patronus.ai/).
|
||||||
|
3. Export your API key using `export PATRONUS_API_KEY=[YOUR_KEY_HERE]`
|
||||||
|
|
||||||
|
## Example
|
||||||
|
|
||||||
|
This example demonstrates the use of the PatronusEvalTool for verifying if the generated content is code or not. Here, the agent selects the `contains-code` predefined-criteria, evaluates the output generated for the instruction and logs the results to [app.patronus.ai](https://app.patronus.ai)
|
||||||
|
|
||||||
|
```python
|
||||||
|
from crewai_tools import PatronusEvalTool
|
||||||
|
tool = PatronusEvalTool()
|
||||||
|
|
||||||
|
coding_agent = Agent(
|
||||||
|
role="Coding Agent",
|
||||||
|
goal="Generate high quality code and verify that the output is code by using Patronus AI's evaluation tool.",
|
||||||
|
backstory="You are an experienced coder who can generate high quality python code. You can follow complex instructions accurately and effectively.",
|
||||||
|
tools=[patronus_eval_tool],
|
||||||
|
verbose=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
generate_code = Task(
|
||||||
|
description="Create a simple program to generate the first N numbers in the Fibonacci sequence. Select the most appropriate evaluator and criteria for evaluating your output.",
|
||||||
|
expected_output="Program that generates the first N numbers in the Fibonacci sequence.",
|
||||||
|
agent=coding_agent,
|
||||||
|
)
|
||||||
|
|
||||||
|
crew = Crew(agents=[coding_agent], tasks=[generate_code])
|
||||||
|
crew.kickoff()
|
||||||
|
```
|
||||||
|
|
||||||
|
## Conclusion
|
||||||
|
|
||||||
|
With the `PatronusEvalTool`, users can build confidence in their agentic systems and improve reliability of their product.
|
||||||
|
Using [patronus.ai](https://patronus.ai), agents can choose from several of the pre-defined or custom defined criteria from the platform and evaluate their outputs, making it easier for the user to debug their agentic pipelines.
|
||||||
|
Users can also define their own criteria at [app.patronus.ai](https://app.patronus.ai) or local evaluation function (guide [here](https://docs.patronus.ai/docs/experiment-evaluators)) to help with custom evaluation needs. For using custom-defined criteria and local evaluators it is encouraged to use the `PatronusPredifinedCriteriaEvalTool` and `PatronusLocalEvaluatorTool` respectively.
|
||||||
75
docs/tools/patronuslocalevaluatortool.mdx
Normal file
75
docs/tools/patronuslocalevaluatortool.mdx
Normal file
@@ -0,0 +1,75 @@
|
|||||||
|
|
||||||
|
---
|
||||||
|
title: Patronus Local Evaluator Tool
|
||||||
|
description: The `PatronusLocalEvaluatorTool` is designed to evaluate agent inputs,outputs and context based on a user defined function and log evaluation results to [app.patronus.ai](http://app.patronus.ai)
|
||||||
|
icon: shield
|
||||||
|
---
|
||||||
|
|
||||||
|
# `PatronusLocalEvaluatorTool`
|
||||||
|
|
||||||
|
## Description
|
||||||
|
|
||||||
|
The `PatronusLocalEvaluatorTool` is designed to evaluate agent inputs, outputs and context based on a user defined local function and log evaluation results to [app.patronus.ai](http://app.patronus.ai)
|
||||||
|
It utilizes the [Patronus AI](https://patronus.ai/) API to
|
||||||
|
1. Evaluate the inputs/outputs/context according to the user defined metric/evaluation criteria
|
||||||
|
2. Log the results to [app.patronus.ai](https://app.patronus.ai) where they can be visualized
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
|
||||||
|
To incorporate this tool into your project, follow the installation instructions below:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
pip install 'crewai[tools]'
|
||||||
|
```
|
||||||
|
|
||||||
|
## Steps to Get Started
|
||||||
|
|
||||||
|
Follow these steps correctly to use the PatronusLocalEvaluatorTool :
|
||||||
|
|
||||||
|
1. Confirm that the `crewai[tools]` package is installed in your Python environment.
|
||||||
|
2. Acquire a Patronus API key by registering for a free account at [patronus.ai](https://patronus.ai/).
|
||||||
|
3. Export your API key using `export PATRONUS_API_KEY=[YOUR_KEY_HERE]`
|
||||||
|
|
||||||
|
## Example
|
||||||
|
|
||||||
|
This example demonstrates the use of the PatronusLocalEvaluatorTool.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from patronus import Client, EvaluationResult
|
||||||
|
from crewai_tools import PatronusLocalEvaluatorTool
|
||||||
|
|
||||||
|
client = Client()
|
||||||
|
|
||||||
|
# Register a local evaluation function. For more details refer to https://docs.patronus.ai/docs/experiment-evaluators
|
||||||
|
@client.register_local_evaluator("local_evaluator_name")
|
||||||
|
def my_evaluator(**kwargs):
|
||||||
|
return EvaluationResult(pass_="PASS", score=0.5, explanation="Explanation test")
|
||||||
|
|
||||||
|
patronus_eval_tool = PatronusLocalEvaluatorTool(
|
||||||
|
evaluator="local_evaluator_name", evaluated_model_gold_answer="test"
|
||||||
|
)
|
||||||
|
|
||||||
|
coding_agent = Agent(
|
||||||
|
role="Coding Agent",
|
||||||
|
goal="Generate high quality code and verify that the output is code by using Patronus AI's evaluation tool.",
|
||||||
|
backstory="You are an experienced coder who can generate high quality python code. You can follow complex instructions accurately and effectively.",
|
||||||
|
tools=[patronus_eval_tool],
|
||||||
|
verbose=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
generate_code = Task(
|
||||||
|
description="Create a simple program to generate the first N numbers in the Fibonacci sequence. Select the most appropriate evaluator and criteria for evaluating your output.",
|
||||||
|
expected_output="Program that generates the first N numbers in the Fibonacci sequence.",
|
||||||
|
agent=coding_agent,
|
||||||
|
)
|
||||||
|
|
||||||
|
crew = Crew(agents=[coding_agent], tasks=[generate_code])
|
||||||
|
crew.kickoff()
|
||||||
|
```
|
||||||
|
|
||||||
|
## Conclusion
|
||||||
|
|
||||||
|
Using `PatronusLocalEvaluatorTool` users can easily and quickly define custom evaluation functions and help improve customer confidence in their agentic systems.
|
||||||
|
Using patronus.ai, users can conveniently log their custom metrics to [app.patronus.ai](https://app.patronus.ai), making it easier for the user to visualize trends and debug their agentic pipelines.
|
||||||
|
Users can also define their own criteria at [app.patronus.ai](https://app.patronus.ai) or let the agent choose an existing evaluator on the Patronus platform to help with custom evaluation needs.
|
||||||
|
For using custom-defined criteria and local evaluators it is encouraged to use the `PatronusPredifinedCriteriaEvalTool` and `PatronusEvalTool` respectively.
|
||||||
65
docs/tools/patronuspredefinedcriteriaevaltool.mdx
Normal file
65
docs/tools/patronuspredefinedcriteriaevaltool.mdx
Normal file
@@ -0,0 +1,65 @@
|
|||||||
|
|
||||||
|
---
|
||||||
|
title: Patronus Eval Tool
|
||||||
|
description: The `PatronusPredefinedCriteriaEvalTool` is designed to evaluate agent outputs for a specific criteria on the Patronus platform. The evaluation results for this are logged to [app.patronus.ai](https://app.patronus.ai)
|
||||||
|
icon: shield
|
||||||
|
---
|
||||||
|
|
||||||
|
# `PatronusPredefinedCriteriaEvalTool`
|
||||||
|
|
||||||
|
## Description
|
||||||
|
|
||||||
|
The `PatronusPredefinedCriteriaEvalTool` is designed to evaluate agent outputs for a specific criteria on the Patronus platform. The evaluation results for this are logged to [app.patronus.ai](https://app.patronus.ai)
|
||||||
|
It utilizes the [Patronus AI](https://patronus.ai/) API to
|
||||||
|
1. Evaluate the agent input, output, context and gold answer (if available) according to the criteria
|
||||||
|
2. Logs the results to [app.patronus.ai](https://app.patronus.ai)
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
|
||||||
|
To incorporate this tool into your project, follow the installation instructions below:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
pip install 'crewai[tools]'
|
||||||
|
```
|
||||||
|
|
||||||
|
## Steps to Get Started
|
||||||
|
|
||||||
|
Follow these steps correctly to use the PatronusPredefinedCriteriaEvalTool :
|
||||||
|
|
||||||
|
1. Confirm that the `crewai[tools]` package is installed in your Python environment.
|
||||||
|
2. Acquire a Patronus API key by registering for a free account at [patronus.ai](https://patronus.ai/).
|
||||||
|
3. Export your API key using `export PATRONUS_API_KEY=[YOUR_KEY_HERE]`
|
||||||
|
|
||||||
|
## Example
|
||||||
|
|
||||||
|
This example demonstrates the use of the PatronusPredefinedCriteriaEvalTool for verifying if the generated content is code or not. Here, the agent selects the `contains-code` predefined-criteria, evaluates the output generated for the instruction and logs the results to [app.patronus.ai](https://app.patronus.ai)
|
||||||
|
|
||||||
|
```python
|
||||||
|
from crewai_tools import PatronusPredefinedCriteriaEvalTool
|
||||||
|
patronus_eval_tool = PatronusPredifinedCriteriaEvalTool(
|
||||||
|
evaluators=[{"evaluator": "judge", "criteria": "contains-code"}] # Selecting the "contains-code" criteria and using the default "judge" from Patronus AI
|
||||||
|
)
|
||||||
|
|
||||||
|
coding_agent = Agent(
|
||||||
|
role="Coding Agent",
|
||||||
|
goal="Generate high quality code and verify that the output is code by using Patronus AI's evaluation tool.",
|
||||||
|
backstory="You are an experienced coder who can generate high quality python code. You can follow complex instructions accurately and effectively.",
|
||||||
|
tools=[patronus_eval_tool],
|
||||||
|
verbose=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
generate_code = Task(
|
||||||
|
description="Create a simple program to generate the first N numbers in the Fibonacci sequence. Select the most appropriate evaluator and criteria for evaluating your output.",
|
||||||
|
expected_output="Program that generates the first N numbers in the Fibonacci sequence.",
|
||||||
|
agent=coding_agent,
|
||||||
|
)
|
||||||
|
|
||||||
|
crew = Crew(agents=[coding_agent], tasks=[generate_code])
|
||||||
|
crew.kickoff()
|
||||||
|
```
|
||||||
|
|
||||||
|
## Conclusion
|
||||||
|
|
||||||
|
Using `PatronusPredefinedCriteriaEvalTool`, users can conveniently evaluate the inputs, outputs and context provided to the agent.
|
||||||
|
Using patronus.ai, agents can choose from several of the pre-defined or custom defined criteria from the platform and evaluate their outputs, making it easier to debug agentic pipelines.
|
||||||
|
In the case where the user wants the agent to contextually select the criteria from the list available at [app.patronus.ai](https://app.patronus.ai) or if a local evaluation function is preferred (guide [here](https://docs.patronus.ai/docs/experiment-evaluators)), it is encouraged to use the `PatronusEvalTool` and `PatronusLocalEvaluatorTool` respectively.
|
||||||
Reference in New Issue
Block a user