Merge branch 'main' of github.com:crewAIInc/crewAI into devin/1741108142-custom-llm-support

This commit is contained in:
Lorenze Jay
2025-03-10 09:34:33 -07:00
26 changed files with 5382 additions and 426 deletions

View File

@@ -18,6 +18,7 @@ from crewai.tools.tool_calling import InstructorToolCalling
from crewai.tools.tool_usage import ToolUsage
from crewai.utilities import RPMController
from crewai.utilities.events import crewai_event_bus
from crewai.utilities.events.llm_events import LLMStreamChunkEvent
from crewai.utilities.events.tool_usage_events import ToolUsageFinishedEvent
@@ -259,9 +260,7 @@ def test_cache_hitting():
def handle_tool_end(source, event):
received_events.append(event)
with (
patch.object(CacheHandler, "read") as read,
):
with (patch.object(CacheHandler, "read") as read,):
read.return_value = "0"
task = Task(
description="What is 2 times 6? Ignore correctness and just return the result of the multiplication tool, you must use the tool.",

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -2,6 +2,7 @@
import hashlib
import json
import os
from concurrent.futures import Future
from unittest import mock
from unittest.mock import MagicMock, patch
@@ -35,6 +36,11 @@ from crewai.utilities.events.crew_events import (
from crewai.utilities.rpm_controller import RPMController
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
# Skip streaming tests when running in CI/CD environments
skip_streaming_in_ci = pytest.mark.skipif(
os.getenv("CI") is not None, reason="Skipping streaming tests in CI/CD environments"
)
ceo = Agent(
role="CEO",
goal="Make sure the writers in your company produce amazing content.",
@@ -948,6 +954,7 @@ def test_api_calls_throttling(capsys):
moveon.assert_called()
@skip_streaming_in_ci
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_kickoff_usage_metrics():
inputs = [
@@ -960,6 +967,7 @@ def test_crew_kickoff_usage_metrics():
role="{topic} Researcher",
goal="Express hot takes on {topic}.",
backstory="You have a lot of experience with {topic}.",
llm=LLM(model="gpt-4o"),
)
task = Task(
@@ -968,12 +976,50 @@ def test_crew_kickoff_usage_metrics():
agent=agent,
)
# Use real LLM calls instead of mocking
crew = Crew(agents=[agent], tasks=[task])
results = crew.kickoff_for_each(inputs=inputs)
assert len(results) == len(inputs)
for result in results:
# Assert that all required keys are in usage_metrics and their values are not None
# Assert that all required keys are in usage_metrics and their values are greater than 0
assert result.token_usage.total_tokens > 0
assert result.token_usage.prompt_tokens > 0
assert result.token_usage.completion_tokens > 0
assert result.token_usage.successful_requests > 0
assert result.token_usage.cached_prompt_tokens == 0
@skip_streaming_in_ci
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_kickoff_streaming_usage_metrics():
inputs = [
{"topic": "dog"},
{"topic": "cat"},
{"topic": "apple"},
]
agent = Agent(
role="{topic} Researcher",
goal="Express hot takes on {topic}.",
backstory="You have a lot of experience with {topic}.",
llm=LLM(model="gpt-4o", stream=True),
max_iter=3,
)
task = Task(
description="Give me an analysis around {topic}.",
expected_output="1 bullet point about {topic} that's under 15 words.",
agent=agent,
)
# Use real LLM calls instead of mocking
crew = Crew(agents=[agent], tasks=[task])
results = crew.kickoff_for_each(inputs=inputs)
assert len(results) == len(inputs)
for result in results:
# Assert that all required keys are in usage_metrics and their values are greater than 0
assert result.token_usage.total_tokens > 0
assert result.token_usage.prompt_tokens > 0
assert result.token_usage.completion_tokens > 0
@@ -3973,3 +4019,5 @@ def test_crew_with_knowledge_sources_works_with_copy():
assert crew_copy.knowledge_sources == crew.knowledge_sources
assert len(crew_copy.agents) == len(crew.agents)
assert len(crew_copy.tasks) == len(crew.tasks)
assert len(crew_copy.tasks) == len(crew.tasks)

View File

@@ -219,7 +219,7 @@ def test_get_custom_llm_provider_gemini():
def test_get_custom_llm_provider_openai():
llm = LLM(model="gpt-4")
assert llm._get_custom_llm_provider() == "openai"
assert llm._get_custom_llm_provider() == None
def test_validate_call_params_supported():
@@ -285,6 +285,7 @@ def test_o3_mini_reasoning_effort_medium():
assert isinstance(result, str)
assert "Paris" in result
def test_context_window_validation():
"""Test that context window validation works correctly."""
# Test valid window size

View File

@@ -0,0 +1,170 @@
interactions:
- request:
body: '{"messages": [{"role": "user", "content": "Tell me a short joke"}], "model":
"gpt-3.5-turbo", "stop": [], "stream": true}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '121'
content-type:
- application/json
cookie:
- _cfuvid=IY8ppO70AMHr2skDSUsGh71zqHHdCQCZ3OvkPi26NBc-1740424913267-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.65.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.65.1
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"role":"assistant","content":"","refusal":null},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Why"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
couldn"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"''t"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
the"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
bicycle"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
stand"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
up"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
by"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
itself"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"?"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
Because"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
it"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
was"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
two"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"-t"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"ired"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"!"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
'
headers:
CF-RAY:
- 91ab1bcbad95bcda-ATL
Connection:
- keep-alive
Content-Type:
- text/event-stream; charset=utf-8
Date:
- Mon, 03 Mar 2025 18:13:34 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=Jydtg8l0yjWRI2vKmejdq.C1W.sasIwEbTrV2rUt6V0-1741025614-1.0.1.1-Af3gmq.j2ecn9QEa3aCVY09QU4VqoW2GTk9AjvzPA.jyAZlwhJd4paniSt3kSusH0tryW03iC8uaX826hb2xzapgcfSm6Jdh_eWh_BMCh_8;
path=/; expires=Mon, 03-Mar-25 18:43:34 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=5wzaJSCvT1p1Eazad55wDvp1JsgxrlghhmmU9tx0fMs-1741025614868-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '127'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '50000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '49999978'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_2a2a04977ace88fdd64cf570f80c0202
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,107 @@
interactions:
- request:
body: '{"messages": [{"role": "user", "content": "Tell me a short joke"}], "model":
"gpt-4o", "stop": [], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '115'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.65.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.65.1
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFJBbtswELzrFVteerEKSZbrxpcCDuBTUfSUtigCgSZXEhuKJLirNEbg
vxeSHMtBXSAXHmZ2BjPLfU4AhNFiA0K1klUXbLpde/X1tvtW/tnfrW6//Lzb7UraLn8s2+xpJxaD
wu9/o+IX1Qflu2CRjXcTrSJKxsE1X5d5kRWrdT4SnddoB1kTOC19WmRFmWaf0uzjSdh6o5DEBn4l
AADP4ztEdBqfxAayxQvSIZFsUGzOQwAiejsgQhIZYulYLGZSecfoxtTf2wNo794zkDLo2BATcOyJ
QbLv6DNsUcmeELjFA3TyAaEPgI8YD9wa17y7NI5Y9ySHXq639oQfz0mtb0L0ezrxZ7w2zlBbRZTk
3ZCK2AcxsscE4H7cSP+qpAjRd4Er9g/oBsO8mOzE/AVXSPYs7YwX5eKKW6WRpbF0sVGhpGpRz8p5
/bLXxl8QyUXnf8Nc8556G9e8xX4mlMLAqKsQURv1uvA8FnE40P+NnXc8BhaE8dEorNhgHP5BYy17
O92OoAMxdlVtXIMxRDMdUB2qWt3UuV5ny5VIjslfAAAA//8DADx20t9JAwAA
headers:
CF-RAY:
- 91bbfc033e461d6e-ATL
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 05 Mar 2025 19:22:51 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=LecfSlhN6VGr4kTlMiMCqRPInNb1m8zOikTZxtsE_WM-1741202571-1.0.1.1-T8nh2g1PcqyLIV97_HH9Q_nSUyCtaiFAOzvMxlswn6XjJCcSLJhi_fmkbylwppwoRPTxgs4S6VsVH0mp4ZcDTABBbtemKj7vS8QRDpRrmsU;
path=/; expires=Wed, 05-Mar-25 19:52:51 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=wyMrJP5k5bgWyD8rsK4JPvAJ78JWrsrT0lyV9DP4WZM-1741202571727-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '416'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999978'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_f42504d00bda0a492dced0ba3cf302d8
status:
code: 200
message: OK
version: 1

View File

@@ -1,3 +1,4 @@
import os
from datetime import datetime
from unittest.mock import Mock, patch
@@ -38,6 +39,7 @@ from crewai.utilities.events.llm_events import (
LLMCallFailedEvent,
LLMCallStartedEvent,
LLMCallType,
LLMStreamChunkEvent,
)
from crewai.utilities.events.task_events import (
TaskCompletedEvent,
@@ -48,6 +50,11 @@ from crewai.utilities.events.tool_usage_events import (
ToolUsageErrorEvent,
)
# Skip streaming tests when running in CI/CD environments
skip_streaming_in_ci = pytest.mark.skipif(
os.getenv("CI") is not None, reason="Skipping streaming tests in CI/CD environments"
)
base_agent = Agent(
role="base_agent",
llm="gpt-4o-mini",
@@ -615,3 +622,152 @@ def test_llm_emits_call_failed_event():
assert len(received_events) == 1
assert received_events[0].type == "llm_call_failed"
assert received_events[0].error == error_message
@skip_streaming_in_ci
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_emits_stream_chunk_events():
"""Test that LLM emits stream chunk events when streaming is enabled."""
received_chunks = []
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(LLMStreamChunkEvent)
def handle_stream_chunk(source, event):
received_chunks.append(event.chunk)
# Create an LLM with streaming enabled
llm = LLM(model="gpt-4o", stream=True)
# Call the LLM with a simple message
response = llm.call("Tell me a short joke")
# Verify that we received chunks
assert len(received_chunks) > 0
# Verify that concatenating all chunks equals the final response
assert "".join(received_chunks) == response
@skip_streaming_in_ci
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_no_stream_chunks_when_streaming_disabled():
"""Test that LLM doesn't emit stream chunk events when streaming is disabled."""
received_chunks = []
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(LLMStreamChunkEvent)
def handle_stream_chunk(source, event):
received_chunks.append(event.chunk)
# Create an LLM with streaming disabled
llm = LLM(model="gpt-4o", stream=False)
# Call the LLM with a simple message
response = llm.call("Tell me a short joke")
# Verify that we didn't receive any chunks
assert len(received_chunks) == 0
# Verify we got a response
assert response and isinstance(response, str)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_streaming_fallback_to_non_streaming():
"""Test that streaming falls back to non-streaming when there's an error."""
received_chunks = []
fallback_called = False
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(LLMStreamChunkEvent)
def handle_stream_chunk(source, event):
received_chunks.append(event.chunk)
# Create an LLM with streaming enabled
llm = LLM(model="gpt-4o", stream=True)
# Store original methods
original_call = llm.call
# Create a mock call method that handles the streaming error
def mock_call(messages, tools=None, callbacks=None, available_functions=None):
nonlocal fallback_called
# Emit a couple of chunks to simulate partial streaming
crewai_event_bus.emit(llm, event=LLMStreamChunkEvent(chunk="Test chunk 1"))
crewai_event_bus.emit(llm, event=LLMStreamChunkEvent(chunk="Test chunk 2"))
# Mark that fallback would be called
fallback_called = True
# Return a response as if fallback succeeded
return "Fallback response after streaming error"
# Replace the call method with our mock
llm.call = mock_call
try:
# Call the LLM
response = llm.call("Tell me a short joke")
# Verify that we received some chunks
assert len(received_chunks) == 2
assert received_chunks[0] == "Test chunk 1"
assert received_chunks[1] == "Test chunk 2"
# Verify fallback was triggered
assert fallback_called
# Verify we got the fallback response
assert response == "Fallback response after streaming error"
finally:
# Restore the original method
llm.call = original_call
@pytest.mark.vcr(filter_headers=["authorization"])
def test_streaming_empty_response_handling():
"""Test that streaming handles empty responses correctly."""
received_chunks = []
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(LLMStreamChunkEvent)
def handle_stream_chunk(source, event):
received_chunks.append(event.chunk)
# Create an LLM with streaming enabled
llm = LLM(model="gpt-3.5-turbo", stream=True)
# Store original methods
original_call = llm.call
# Create a mock call method that simulates empty chunks
def mock_call(messages, tools=None, callbacks=None, available_functions=None):
# Emit a few empty chunks
for _ in range(3):
crewai_event_bus.emit(llm, event=LLMStreamChunkEvent(chunk=""))
# Return the default message for empty responses
return "I apologize, but I couldn't generate a proper response. Please try again or rephrase your request."
# Replace the call method with our mock
llm.call = mock_call
try:
# Call the LLM - this should handle empty response
response = llm.call("Tell me a short joke")
# Verify that we received empty chunks
assert len(received_chunks) == 3
assert all(chunk == "" for chunk in received_chunks)
# Verify the response is the default message for empty responses
assert "I apologize" in response and "couldn't generate" in response
finally:
# Restore the original method
llm.call = original_call