mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-10 16:48:30 +00:00
Merge branch 'main' of github.com:crewAIInc/crewAI into devin/1741108142-custom-llm-support
This commit is contained in:
@@ -18,6 +18,7 @@ from crewai.tools.tool_calling import InstructorToolCalling
|
||||
from crewai.tools.tool_usage import ToolUsage
|
||||
from crewai.utilities import RPMController
|
||||
from crewai.utilities.events import crewai_event_bus
|
||||
from crewai.utilities.events.llm_events import LLMStreamChunkEvent
|
||||
from crewai.utilities.events.tool_usage_events import ToolUsageFinishedEvent
|
||||
|
||||
|
||||
@@ -259,9 +260,7 @@ def test_cache_hitting():
|
||||
def handle_tool_end(source, event):
|
||||
received_events.append(event)
|
||||
|
||||
with (
|
||||
patch.object(CacheHandler, "read") as read,
|
||||
):
|
||||
with (patch.object(CacheHandler, "read") as read,):
|
||||
read.return_value = "0"
|
||||
task = Task(
|
||||
description="What is 2 times 6? Ignore correctness and just return the result of the multiplication tool, you must use the tool.",
|
||||
|
||||
2571
tests/cassettes/test_crew_kickoff_streaming_usage_metrics.yaml
Normal file
2571
tests/cassettes/test_crew_kickoff_streaming_usage_metrics.yaml
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@@ -2,6 +2,7 @@
|
||||
|
||||
import hashlib
|
||||
import json
|
||||
import os
|
||||
from concurrent.futures import Future
|
||||
from unittest import mock
|
||||
from unittest.mock import MagicMock, patch
|
||||
@@ -35,6 +36,11 @@ from crewai.utilities.events.crew_events import (
|
||||
from crewai.utilities.rpm_controller import RPMController
|
||||
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
|
||||
|
||||
# Skip streaming tests when running in CI/CD environments
|
||||
skip_streaming_in_ci = pytest.mark.skipif(
|
||||
os.getenv("CI") is not None, reason="Skipping streaming tests in CI/CD environments"
|
||||
)
|
||||
|
||||
ceo = Agent(
|
||||
role="CEO",
|
||||
goal="Make sure the writers in your company produce amazing content.",
|
||||
@@ -948,6 +954,7 @@ def test_api_calls_throttling(capsys):
|
||||
moveon.assert_called()
|
||||
|
||||
|
||||
@skip_streaming_in_ci
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_crew_kickoff_usage_metrics():
|
||||
inputs = [
|
||||
@@ -960,6 +967,7 @@ def test_crew_kickoff_usage_metrics():
|
||||
role="{topic} Researcher",
|
||||
goal="Express hot takes on {topic}.",
|
||||
backstory="You have a lot of experience with {topic}.",
|
||||
llm=LLM(model="gpt-4o"),
|
||||
)
|
||||
|
||||
task = Task(
|
||||
@@ -968,12 +976,50 @@ def test_crew_kickoff_usage_metrics():
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
# Use real LLM calls instead of mocking
|
||||
crew = Crew(agents=[agent], tasks=[task])
|
||||
results = crew.kickoff_for_each(inputs=inputs)
|
||||
|
||||
assert len(results) == len(inputs)
|
||||
for result in results:
|
||||
# Assert that all required keys are in usage_metrics and their values are not None
|
||||
# Assert that all required keys are in usage_metrics and their values are greater than 0
|
||||
assert result.token_usage.total_tokens > 0
|
||||
assert result.token_usage.prompt_tokens > 0
|
||||
assert result.token_usage.completion_tokens > 0
|
||||
assert result.token_usage.successful_requests > 0
|
||||
assert result.token_usage.cached_prompt_tokens == 0
|
||||
|
||||
|
||||
@skip_streaming_in_ci
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_crew_kickoff_streaming_usage_metrics():
|
||||
inputs = [
|
||||
{"topic": "dog"},
|
||||
{"topic": "cat"},
|
||||
{"topic": "apple"},
|
||||
]
|
||||
|
||||
agent = Agent(
|
||||
role="{topic} Researcher",
|
||||
goal="Express hot takes on {topic}.",
|
||||
backstory="You have a lot of experience with {topic}.",
|
||||
llm=LLM(model="gpt-4o", stream=True),
|
||||
max_iter=3,
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Give me an analysis around {topic}.",
|
||||
expected_output="1 bullet point about {topic} that's under 15 words.",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
# Use real LLM calls instead of mocking
|
||||
crew = Crew(agents=[agent], tasks=[task])
|
||||
results = crew.kickoff_for_each(inputs=inputs)
|
||||
|
||||
assert len(results) == len(inputs)
|
||||
for result in results:
|
||||
# Assert that all required keys are in usage_metrics and their values are greater than 0
|
||||
assert result.token_usage.total_tokens > 0
|
||||
assert result.token_usage.prompt_tokens > 0
|
||||
assert result.token_usage.completion_tokens > 0
|
||||
@@ -3973,3 +4019,5 @@ def test_crew_with_knowledge_sources_works_with_copy():
|
||||
assert crew_copy.knowledge_sources == crew.knowledge_sources
|
||||
assert len(crew_copy.agents) == len(crew.agents)
|
||||
assert len(crew_copy.tasks) == len(crew.tasks)
|
||||
|
||||
assert len(crew_copy.tasks) == len(crew.tasks)
|
||||
|
||||
@@ -219,7 +219,7 @@ def test_get_custom_llm_provider_gemini():
|
||||
|
||||
def test_get_custom_llm_provider_openai():
|
||||
llm = LLM(model="gpt-4")
|
||||
assert llm._get_custom_llm_provider() == "openai"
|
||||
assert llm._get_custom_llm_provider() == None
|
||||
|
||||
|
||||
def test_validate_call_params_supported():
|
||||
@@ -285,6 +285,7 @@ def test_o3_mini_reasoning_effort_medium():
|
||||
assert isinstance(result, str)
|
||||
assert "Paris" in result
|
||||
|
||||
|
||||
def test_context_window_validation():
|
||||
"""Test that context window validation works correctly."""
|
||||
# Test valid window size
|
||||
|
||||
@@ -0,0 +1,170 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "Tell me a short joke"}], "model":
|
||||
"gpt-3.5-turbo", "stop": [], "stream": true}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '121'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- _cfuvid=IY8ppO70AMHr2skDSUsGh71zqHHdCQCZ3OvkPi26NBc-1740424913267-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.65.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.65.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-read-timeout:
|
||||
- '600.0'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.8
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: 'data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"role":"assistant","content":"","refusal":null},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"Why"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
couldn"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"''t"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
the"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
bicycle"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
stand"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
up"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
by"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
itself"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"?"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
Because"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
it"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
was"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"
|
||||
two"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"-t"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"ired"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{"content":"!"},"logprobs":null,"finish_reason":null}]}
|
||||
|
||||
|
||||
data: {"id":"chatcmpl-B74aE2TDl9ZbKx2fXoVatoMDnErNm","object":"chat.completion.chunk","created":1741025614,"model":"gpt-3.5-turbo-0125","service_tier":"default","system_fingerprint":null,"choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
|
||||
|
||||
|
||||
data: [DONE]
|
||||
|
||||
|
||||
'
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 91ab1bcbad95bcda-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Type:
|
||||
- text/event-stream; charset=utf-8
|
||||
Date:
|
||||
- Mon, 03 Mar 2025 18:13:34 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=Jydtg8l0yjWRI2vKmejdq.C1W.sasIwEbTrV2rUt6V0-1741025614-1.0.1.1-Af3gmq.j2ecn9QEa3aCVY09QU4VqoW2GTk9AjvzPA.jyAZlwhJd4paniSt3kSusH0tryW03iC8uaX826hb2xzapgcfSm6Jdh_eWh_BMCh_8;
|
||||
path=/; expires=Mon, 03-Mar-25 18:43:34 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=5wzaJSCvT1p1Eazad55wDvp1JsgxrlghhmmU9tx0fMs-1741025614868-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '127'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '50000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '49999978'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_2a2a04977ace88fdd64cf570f80c0202
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
@@ -0,0 +1,107 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "user", "content": "Tell me a short joke"}], "model":
|
||||
"gpt-4o", "stop": [], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '115'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.65.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.65.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-read-timeout:
|
||||
- '600.0'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.8
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: !!binary |
|
||||
H4sIAAAAAAAAAwAAAP//jFJBbtswELzrFVteerEKSZbrxpcCDuBTUfSUtigCgSZXEhuKJLirNEbg
|
||||
vxeSHMtBXSAXHmZ2BjPLfU4AhNFiA0K1klUXbLpde/X1tvtW/tnfrW6//Lzb7UraLn8s2+xpJxaD
|
||||
wu9/o+IX1Qflu2CRjXcTrSJKxsE1X5d5kRWrdT4SnddoB1kTOC19WmRFmWaf0uzjSdh6o5DEBn4l
|
||||
AADP4ztEdBqfxAayxQvSIZFsUGzOQwAiejsgQhIZYulYLGZSecfoxtTf2wNo794zkDLo2BATcOyJ
|
||||
QbLv6DNsUcmeELjFA3TyAaEPgI8YD9wa17y7NI5Y9ySHXq639oQfz0mtb0L0ezrxZ7w2zlBbRZTk
|
||||
3ZCK2AcxsscE4H7cSP+qpAjRd4Er9g/oBsO8mOzE/AVXSPYs7YwX5eKKW6WRpbF0sVGhpGpRz8p5
|
||||
/bLXxl8QyUXnf8Nc8556G9e8xX4mlMLAqKsQURv1uvA8FnE40P+NnXc8BhaE8dEorNhgHP5BYy17
|
||||
O92OoAMxdlVtXIMxRDMdUB2qWt3UuV5ny5VIjslfAAAA//8DADx20t9JAwAA
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 91bbfc033e461d6e-ATL
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 05 Mar 2025 19:22:51 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=LecfSlhN6VGr4kTlMiMCqRPInNb1m8zOikTZxtsE_WM-1741202571-1.0.1.1-T8nh2g1PcqyLIV97_HH9Q_nSUyCtaiFAOzvMxlswn6XjJCcSLJhi_fmkbylwppwoRPTxgs4S6VsVH0mp4ZcDTABBbtemKj7vS8QRDpRrmsU;
|
||||
path=/; expires=Wed, 05-Mar-25 19:52:51 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=wyMrJP5k5bgWyD8rsK4JPvAJ78JWrsrT0lyV9DP4WZM-1741202571727-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '416'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29999978'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_f42504d00bda0a492dced0ba3cf302d8
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
@@ -1,3 +1,4 @@
|
||||
import os
|
||||
from datetime import datetime
|
||||
from unittest.mock import Mock, patch
|
||||
|
||||
@@ -38,6 +39,7 @@ from crewai.utilities.events.llm_events import (
|
||||
LLMCallFailedEvent,
|
||||
LLMCallStartedEvent,
|
||||
LLMCallType,
|
||||
LLMStreamChunkEvent,
|
||||
)
|
||||
from crewai.utilities.events.task_events import (
|
||||
TaskCompletedEvent,
|
||||
@@ -48,6 +50,11 @@ from crewai.utilities.events.tool_usage_events import (
|
||||
ToolUsageErrorEvent,
|
||||
)
|
||||
|
||||
# Skip streaming tests when running in CI/CD environments
|
||||
skip_streaming_in_ci = pytest.mark.skipif(
|
||||
os.getenv("CI") is not None, reason="Skipping streaming tests in CI/CD environments"
|
||||
)
|
||||
|
||||
base_agent = Agent(
|
||||
role="base_agent",
|
||||
llm="gpt-4o-mini",
|
||||
@@ -615,3 +622,152 @@ def test_llm_emits_call_failed_event():
|
||||
assert len(received_events) == 1
|
||||
assert received_events[0].type == "llm_call_failed"
|
||||
assert received_events[0].error == error_message
|
||||
|
||||
|
||||
@skip_streaming_in_ci
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_llm_emits_stream_chunk_events():
|
||||
"""Test that LLM emits stream chunk events when streaming is enabled."""
|
||||
received_chunks = []
|
||||
|
||||
with crewai_event_bus.scoped_handlers():
|
||||
|
||||
@crewai_event_bus.on(LLMStreamChunkEvent)
|
||||
def handle_stream_chunk(source, event):
|
||||
received_chunks.append(event.chunk)
|
||||
|
||||
# Create an LLM with streaming enabled
|
||||
llm = LLM(model="gpt-4o", stream=True)
|
||||
|
||||
# Call the LLM with a simple message
|
||||
response = llm.call("Tell me a short joke")
|
||||
|
||||
# Verify that we received chunks
|
||||
assert len(received_chunks) > 0
|
||||
|
||||
# Verify that concatenating all chunks equals the final response
|
||||
assert "".join(received_chunks) == response
|
||||
|
||||
|
||||
@skip_streaming_in_ci
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_llm_no_stream_chunks_when_streaming_disabled():
|
||||
"""Test that LLM doesn't emit stream chunk events when streaming is disabled."""
|
||||
received_chunks = []
|
||||
|
||||
with crewai_event_bus.scoped_handlers():
|
||||
|
||||
@crewai_event_bus.on(LLMStreamChunkEvent)
|
||||
def handle_stream_chunk(source, event):
|
||||
received_chunks.append(event.chunk)
|
||||
|
||||
# Create an LLM with streaming disabled
|
||||
llm = LLM(model="gpt-4o", stream=False)
|
||||
|
||||
# Call the LLM with a simple message
|
||||
response = llm.call("Tell me a short joke")
|
||||
|
||||
# Verify that we didn't receive any chunks
|
||||
assert len(received_chunks) == 0
|
||||
|
||||
# Verify we got a response
|
||||
assert response and isinstance(response, str)
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_streaming_fallback_to_non_streaming():
|
||||
"""Test that streaming falls back to non-streaming when there's an error."""
|
||||
received_chunks = []
|
||||
fallback_called = False
|
||||
|
||||
with crewai_event_bus.scoped_handlers():
|
||||
|
||||
@crewai_event_bus.on(LLMStreamChunkEvent)
|
||||
def handle_stream_chunk(source, event):
|
||||
received_chunks.append(event.chunk)
|
||||
|
||||
# Create an LLM with streaming enabled
|
||||
llm = LLM(model="gpt-4o", stream=True)
|
||||
|
||||
# Store original methods
|
||||
original_call = llm.call
|
||||
|
||||
# Create a mock call method that handles the streaming error
|
||||
def mock_call(messages, tools=None, callbacks=None, available_functions=None):
|
||||
nonlocal fallback_called
|
||||
# Emit a couple of chunks to simulate partial streaming
|
||||
crewai_event_bus.emit(llm, event=LLMStreamChunkEvent(chunk="Test chunk 1"))
|
||||
crewai_event_bus.emit(llm, event=LLMStreamChunkEvent(chunk="Test chunk 2"))
|
||||
|
||||
# Mark that fallback would be called
|
||||
fallback_called = True
|
||||
|
||||
# Return a response as if fallback succeeded
|
||||
return "Fallback response after streaming error"
|
||||
|
||||
# Replace the call method with our mock
|
||||
llm.call = mock_call
|
||||
|
||||
try:
|
||||
# Call the LLM
|
||||
response = llm.call("Tell me a short joke")
|
||||
|
||||
# Verify that we received some chunks
|
||||
assert len(received_chunks) == 2
|
||||
assert received_chunks[0] == "Test chunk 1"
|
||||
assert received_chunks[1] == "Test chunk 2"
|
||||
|
||||
# Verify fallback was triggered
|
||||
assert fallback_called
|
||||
|
||||
# Verify we got the fallback response
|
||||
assert response == "Fallback response after streaming error"
|
||||
|
||||
finally:
|
||||
# Restore the original method
|
||||
llm.call = original_call
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_streaming_empty_response_handling():
|
||||
"""Test that streaming handles empty responses correctly."""
|
||||
received_chunks = []
|
||||
|
||||
with crewai_event_bus.scoped_handlers():
|
||||
|
||||
@crewai_event_bus.on(LLMStreamChunkEvent)
|
||||
def handle_stream_chunk(source, event):
|
||||
received_chunks.append(event.chunk)
|
||||
|
||||
# Create an LLM with streaming enabled
|
||||
llm = LLM(model="gpt-3.5-turbo", stream=True)
|
||||
|
||||
# Store original methods
|
||||
original_call = llm.call
|
||||
|
||||
# Create a mock call method that simulates empty chunks
|
||||
def mock_call(messages, tools=None, callbacks=None, available_functions=None):
|
||||
# Emit a few empty chunks
|
||||
for _ in range(3):
|
||||
crewai_event_bus.emit(llm, event=LLMStreamChunkEvent(chunk=""))
|
||||
|
||||
# Return the default message for empty responses
|
||||
return "I apologize, but I couldn't generate a proper response. Please try again or rephrase your request."
|
||||
|
||||
# Replace the call method with our mock
|
||||
llm.call = mock_call
|
||||
|
||||
try:
|
||||
# Call the LLM - this should handle empty response
|
||||
response = llm.call("Tell me a short joke")
|
||||
|
||||
# Verify that we received empty chunks
|
||||
assert len(received_chunks) == 3
|
||||
assert all(chunk == "" for chunk in received_chunks)
|
||||
|
||||
# Verify the response is the default message for empty responses
|
||||
assert "I apologize" in response and "couldn't generate" in response
|
||||
|
||||
finally:
|
||||
# Restore the original method
|
||||
llm.call = original_call
|
||||
|
||||
Reference in New Issue
Block a user