fixing long temr memory interpolation

This commit is contained in:
João Moura
2024-04-07 14:55:35 -03:00
parent a0c4cea9f9
commit 0c717fb24a
4 changed files with 21 additions and 18 deletions

View File

@@ -37,13 +37,18 @@ class ContextualMemory:
Fetches historical data or insights from LTM that are relevant to the task's description and expected_output,
formatted as bullet points.
"""
ltm_results = self.ltm.search(task)
ltm_results = self.ltm.search(task, latest_n=2)
if not ltm_results:
return None
formatted_results = "\n".join(
[f"{result['metadata']['suggestions']}" for result in ltm_results]
)
formatted_results = list(set(formatted_results.split('\n')))
formatted_results = [
suggestion
for result in ltm_results
for suggestion in result["metadata"]["suggestions"]
]
formatted_results = list(dict.fromkeys(formatted_results))
formatted_results = "\n".join([f"- {result}" for result in formatted_results])
return f"Historical Data:\n{formatted_results}" if ltm_results else ""
def _fetch_entity_context(self, query) -> str: