mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-11 00:58:30 +00:00
feat: Introduce production-ready Flows and Crews architecture with new runner and updated documentation across multiple languages.
This commit is contained in:
154
docs/en/concepts/production-architecture.mdx
Normal file
154
docs/en/concepts/production-architecture.mdx
Normal file
@@ -0,0 +1,154 @@
|
||||
---
|
||||
title: Production Architecture
|
||||
description: Best practices for building production-ready AI applications with CrewAI
|
||||
icon: server
|
||||
mode: "wide"
|
||||
---
|
||||
|
||||
# The Flow-First Mindset
|
||||
|
||||
When building production AI applications with CrewAI, **we recommend starting with a Flow**.
|
||||
|
||||
While it's possible to run individual Crews or Agents, wrapping them in a Flow provides the necessary structure for a robust, scalable application.
|
||||
|
||||
## Why Flows?
|
||||
|
||||
1. **State Management**: Flows provide a built-in way to manage state across different steps of your application. This is crucial for passing data between Crews, maintaining context, and handling user inputs.
|
||||
2. **Control**: Flows allow you to define precise execution paths, including loops, conditionals, and branching logic. This is essential for handling edge cases and ensuring your application behaves predictably.
|
||||
3. **Observability**: Flows provide a clear structure that makes it easier to trace execution, debug issues, and monitor performance. We recommend using [CrewAI Tracing](/en/observability/tracing) for detailed insights. Simply run `crewai login` to enable free observability features.
|
||||
|
||||
## The Architecture
|
||||
|
||||
A typical production CrewAI application looks like this:
|
||||
|
||||
```mermaid
|
||||
graph TD
|
||||
Start((Start)) --> Flow[Flow Orchestrator]
|
||||
Flow --> State{State Management}
|
||||
State --> Step1[Step 1: Data Gathering]
|
||||
Step1 --> Crew1[Research Crew]
|
||||
Crew1 --> State
|
||||
State --> Step2{Condition Check}
|
||||
Step2 -- "Valid" --> Step3[Step 3: Execution]
|
||||
Step3 --> Crew2[Action Crew]
|
||||
Step2 -- "Invalid" --> End((End))
|
||||
Crew2 --> End
|
||||
```
|
||||
|
||||
### 1. The Flow Class
|
||||
Your `Flow` class is the entry point. It defines the state schema and the methods that execute your logic.
|
||||
|
||||
```python
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
from pydantic import BaseModel
|
||||
|
||||
class AppState(BaseModel):
|
||||
user_input: str = ""
|
||||
research_results: str = ""
|
||||
final_report: str = ""
|
||||
|
||||
class ProductionFlow(Flow[AppState]):
|
||||
@start()
|
||||
def gather_input(self):
|
||||
# ... logic to get input ...
|
||||
pass
|
||||
|
||||
@listen(gather_input)
|
||||
def run_research_crew(self):
|
||||
# ... trigger a Crew ...
|
||||
pass
|
||||
```
|
||||
|
||||
### 2. State Management
|
||||
Use Pydantic models to define your state. This ensures type safety and makes it clear what data is available at each step.
|
||||
|
||||
- **Keep it minimal**: Store only what you need to persist between steps.
|
||||
- **Use structured data**: Avoid unstructured dictionaries when possible.
|
||||
|
||||
### 3. Crews as Units of Work
|
||||
Delegate complex tasks to Crews. A Crew should be focused on a specific goal (e.g., "Research a topic", "Write a blog post").
|
||||
|
||||
- **Don't over-engineer Crews**: Keep them focused.
|
||||
- **Pass state explicitly**: Pass the necessary data from the Flow state to the Crew inputs.
|
||||
|
||||
```python
|
||||
@listen(gather_input)
|
||||
def run_research_crew(self):
|
||||
crew = ResearchCrew()
|
||||
result = crew.kickoff(inputs={"topic": self.state.user_input})
|
||||
self.state.research_results = result.raw
|
||||
```
|
||||
|
||||
## Control Primitives
|
||||
|
||||
Leverage CrewAI's control primitives to add robustness and control to your Crews.
|
||||
|
||||
### 1. Task Guardrails
|
||||
Use [Task Guardrails](/en/concepts/tasks#task-guardrails) to validate task outputs before they are accepted. This ensures that your agents produce high-quality results.
|
||||
|
||||
```python
|
||||
def validate_content(result: TaskOutput) -> Tuple[bool, Any]:
|
||||
if len(result.raw) < 100:
|
||||
return (False, "Content is too short. Please expand.")
|
||||
return (True, result.raw)
|
||||
|
||||
task = Task(
|
||||
...,
|
||||
guardrail=validate_content
|
||||
)
|
||||
```
|
||||
|
||||
### 2. Structured Outputs
|
||||
Always use structured outputs (`output_pydantic` or `output_json`) when passing data between tasks or to your application. This prevents parsing errors and ensures type safety.
|
||||
|
||||
```python
|
||||
class ResearchResult(BaseModel):
|
||||
summary: str
|
||||
sources: List[str]
|
||||
|
||||
task = Task(
|
||||
...,
|
||||
output_pydantic=ResearchResult
|
||||
)
|
||||
```
|
||||
|
||||
### 3. LLM Hooks
|
||||
Use [LLM Hooks](/en/learn/llm-hooks) to inspect or modify messages before they are sent to the LLM, or to sanitize responses.
|
||||
|
||||
```python
|
||||
@before_llm_call
|
||||
def log_request(context):
|
||||
print(f"Agent {context.agent.role} is calling the LLM...")
|
||||
```
|
||||
|
||||
## Deployment Patterns
|
||||
|
||||
When deploying your Flow, consider the following:
|
||||
|
||||
### CrewAI Enterprise
|
||||
The easiest way to deploy your Flow is using CrewAI Enterprise. It handles the infrastructure, authentication, and monitoring for you.
|
||||
|
||||
Check out the [Deployment Guide](/en/enterprise/guides/deploy-crew) to get started.
|
||||
|
||||
```bash
|
||||
crewai deploy create
|
||||
```
|
||||
|
||||
### Async Execution
|
||||
For long-running tasks, use `kickoff_async` to avoid blocking your API.
|
||||
|
||||
### Persistence
|
||||
Use the `@persist` decorator to save the state of your Flow to a database. This allows you to resume execution if the process crashes or if you need to wait for human input.
|
||||
|
||||
```python
|
||||
@persist
|
||||
class ProductionFlow(Flow[AppState]):
|
||||
# ...
|
||||
```
|
||||
|
||||
## Summary
|
||||
|
||||
- **Start with a Flow.**
|
||||
- **Define a clear State.**
|
||||
- **Use Crews for complex tasks.**
|
||||
- **Deploy with an API and persistence.**
|
||||
Reference in New Issue
Block a user