feat: enhance AnthropicCompletion class with additional client parame… (#3707)

* feat: enhance AnthropicCompletion class with additional client parameters and tool handling

- Added support for client_params in the AnthropicCompletion class to allow for additional client configuration.
- Refactored client initialization to use a dedicated method for retrieving client parameters.
- Implemented a new method to handle tool use conversation flow, ensuring proper execution and response handling.
- Introduced comprehensive test cases to validate the functionality of the AnthropicCompletion class, including tool use scenarios and parameter handling.

* drop print statements

* test: add fixture to mock ANTHROPIC_API_KEY for tests

- Introduced a pytest fixture to automatically mock the ANTHROPIC_API_KEY environment variable for all tests in the test_anthropic.py module.
- This change ensures that tests can run without requiring a real API key, improving test isolation and reliability.

* refactor: streamline streaming message handling in AnthropicCompletion class

- Removed the 'stream' parameter from the API call as it is set internally by the SDK.
- Simplified the handling of tool use events and response construction by extracting token usage from the final message.
- Enhanced the flow for managing tool use conversation, ensuring proper integration with the streaming API response.

* fix streaming here too

* fix: improve error handling in tool conversion for AnthropicCompletion class

- Enhanced exception handling during tool conversion by catching KeyError and ValueError.
- Added logging for conversion errors to aid in debugging and maintain robustness in tool integration.
This commit is contained in:
Lorenze Jay
2025-10-16 10:39:54 -07:00
committed by GitHub
parent 7351e4b0ef
commit 06a45b29db
3 changed files with 857 additions and 65 deletions

View File

@@ -386,7 +386,7 @@ class EventListener(BaseEventListener):
# Read from the in-memory stream
content = self.text_stream.read()
_printer.print(content, end="", flush=True)
_printer.print(content)
self.next_chunk = self.text_stream.tell()
# ----------- LLM GUARDRAIL EVENTS -----------

View File

@@ -1,4 +1,3 @@
import json
import logging
import os
from typing import Any
@@ -40,6 +39,7 @@ class AnthropicCompletion(BaseLLM):
top_p: float | None = None,
stop_sequences: list[str] | None = None,
stream: bool = False,
client_params: dict[str, Any] | None = None,
**kwargs,
):
"""Initialize Anthropic chat completion client.
@@ -55,19 +55,20 @@ class AnthropicCompletion(BaseLLM):
top_p: Nucleus sampling parameter
stop_sequences: Stop sequences (Anthropic uses stop_sequences, not stop)
stream: Enable streaming responses
client_params: Additional parameters for the Anthropic client
**kwargs: Additional parameters
"""
super().__init__(
model=model, temperature=temperature, stop=stop_sequences or [], **kwargs
)
# Initialize Anthropic client
self.client = Anthropic(
api_key=api_key or os.getenv("ANTHROPIC_API_KEY"),
base_url=base_url,
timeout=timeout,
max_retries=max_retries,
)
# Client params
self.client_params = client_params
self.base_url = base_url
self.timeout = timeout
self.max_retries = max_retries
self.client = Anthropic(**self._get_client_params())
# Store completion parameters
self.max_tokens = max_tokens
@@ -79,6 +80,26 @@ class AnthropicCompletion(BaseLLM):
self.is_claude_3 = "claude-3" in model.lower()
self.supports_tools = self.is_claude_3 # Claude 3+ supports tool use
def _get_client_params(self) -> dict[str, Any]:
"""Get client parameters."""
if self.api_key is None:
self.api_key = os.getenv("ANTHROPIC_API_KEY")
if self.api_key is None:
raise ValueError("ANTHROPIC_API_KEY is required")
client_params = {
"api_key": self.api_key,
"base_url": self.base_url,
"timeout": self.timeout,
"max_retries": self.max_retries,
}
if self.client_params:
client_params.update(self.client_params)
return client_params
def call(
self,
messages: str | list[dict[str, str]],
@@ -183,12 +204,20 @@ class AnthropicCompletion(BaseLLM):
def _convert_tools_for_interference(self, tools: list[dict]) -> list[dict]:
"""Convert CrewAI tool format to Anthropic tool use format."""
from crewai.llms.providers.utils.common import safe_tool_conversion
anthropic_tools = []
for tool in tools:
name, description, parameters = safe_tool_conversion(tool, "Anthropic")
if "input_schema" in tool and "name" in tool and "description" in tool:
anthropic_tools.append(tool)
continue
try:
from crewai.llms.providers.utils.common import safe_tool_conversion
name, description, parameters = safe_tool_conversion(tool, "Anthropic")
except (ImportError, KeyError, ValueError) as e:
logging.error(f"Error converting tool to Anthropic format: {e}")
raise e
anthropic_tool = {
"name": name,
@@ -196,7 +225,13 @@ class AnthropicCompletion(BaseLLM):
}
if parameters and isinstance(parameters, dict):
anthropic_tool["input_schema"] = parameters # type: ignore
anthropic_tool["input_schema"] = parameters
else:
anthropic_tool["input_schema"] = {
"type": "object",
"properties": {},
"required": [],
}
anthropic_tools.append(anthropic_tool)
@@ -229,13 +264,11 @@ class AnthropicCompletion(BaseLLM):
content = message.get("content", "")
if role == "system":
# Extract system message - Anthropic handles it separately
if system_message:
system_message += f"\n\n{content}"
else:
system_message = content
else:
# Add user/assistant messages - ensure both role and content are str, not None
role_str = role if role is not None else "user"
content_str = content if content is not None else ""
formatted_messages.append({"role": role_str, "content": content_str})
@@ -270,22 +303,22 @@ class AnthropicCompletion(BaseLLM):
usage = self._extract_anthropic_token_usage(response)
self._track_token_usage_internal(usage)
# Check if Claude wants to use tools
if response.content and available_functions:
for content_block in response.content:
if isinstance(content_block, ToolUseBlock):
function_name = content_block.name
function_args = content_block.input
tool_uses = [
block for block in response.content if isinstance(block, ToolUseBlock)
]
result = self._handle_tool_execution(
function_name=function_name,
function_args=function_args, # type: ignore
available_functions=available_functions,
from_task=from_task,
from_agent=from_agent,
)
if result is not None:
return result
if tool_uses:
# Handle tool use conversation flow
return self._handle_tool_use_conversation(
response,
tool_uses,
params,
available_functions,
from_task,
from_agent,
)
# Extract text content
content = ""
@@ -318,12 +351,14 @@ class AnthropicCompletion(BaseLLM):
) -> str:
"""Handle streaming message completion."""
full_response = ""
tool_uses = {}
# Remove 'stream' parameter as messages.stream() doesn't accept it
# (the SDK sets it internally)
stream_params = {k: v for k, v in params.items() if k != "stream"}
# Make streaming API call
with self.client.messages.stream(**params) as stream:
with self.client.messages.stream(**stream_params) as stream:
for event in stream:
# Handle content delta events
if hasattr(event, "delta") and hasattr(event.delta, "text"):
text_delta = event.delta.text
full_response += text_delta
@@ -333,44 +368,29 @@ class AnthropicCompletion(BaseLLM):
from_agent=from_agent,
)
# Handle tool use events
elif hasattr(event, "delta") and hasattr(event.delta, "partial_json"):
# Tool use streaming - accumulate JSON
tool_id = getattr(event, "index", "default")
if tool_id not in tool_uses:
tool_uses[tool_id] = {
"name": "",
"input": "",
}
final_message: Message = stream.get_final_message()
if hasattr(event.delta, "name"):
tool_uses[tool_id]["name"] = event.delta.name
if hasattr(event.delta, "partial_json"):
tool_uses[tool_id]["input"] += event.delta.partial_json
usage = self._extract_anthropic_token_usage(final_message)
self._track_token_usage_internal(usage)
# Handle completed tool uses
if tool_uses and available_functions:
for tool_data in tool_uses.values():
function_name = tool_data["name"]
if final_message.content and available_functions:
tool_uses = [
block
for block in final_message.content
if isinstance(block, ToolUseBlock)
]
try:
function_args = json.loads(tool_data["input"])
except json.JSONDecodeError as e:
logging.error(f"Failed to parse streamed tool arguments: {e}")
continue
# Execute tool
result = self._handle_tool_execution(
function_name=function_name,
function_args=function_args,
available_functions=available_functions,
from_task=from_task,
from_agent=from_agent,
if tool_uses:
# Handle tool use conversation flow
return self._handle_tool_use_conversation(
final_message,
tool_uses,
params,
available_functions,
from_task,
from_agent,
)
if result is not None:
return result
# Apply stop words to full response
full_response = self._apply_stop_words(full_response)
@@ -385,6 +405,113 @@ class AnthropicCompletion(BaseLLM):
return full_response
def _handle_tool_use_conversation(
self,
initial_response: Message,
tool_uses: list[ToolUseBlock],
params: dict[str, Any],
available_functions: dict[str, Any],
from_task: Any | None = None,
from_agent: Any | None = None,
) -> str:
"""Handle the complete tool use conversation flow.
This implements the proper Anthropic tool use pattern:
1. Claude requests tool use
2. We execute the tools
3. We send tool results back to Claude
4. Claude processes results and generates final response
"""
# Execute all requested tools and collect results
tool_results = []
for tool_use in tool_uses:
function_name = tool_use.name
function_args = tool_use.input
# Execute the tool
result = self._handle_tool_execution(
function_name=function_name,
function_args=function_args, # type: ignore
available_functions=available_functions,
from_task=from_task,
from_agent=from_agent,
)
# Create tool result in Anthropic format
tool_result = {
"type": "tool_result",
"tool_use_id": tool_use.id,
"content": str(result)
if result is not None
else "Tool execution completed",
}
tool_results.append(tool_result)
# Prepare follow-up conversation with tool results
follow_up_params = params.copy()
# Add Claude's tool use response to conversation
assistant_message = {"role": "assistant", "content": initial_response.content}
# Add user message with tool results
user_message = {"role": "user", "content": tool_results}
# Update messages for follow-up call
follow_up_params["messages"] = params["messages"] + [
assistant_message,
user_message,
]
try:
# Send tool results back to Claude for final response
final_response: Message = self.client.messages.create(**follow_up_params)
# Track token usage for follow-up call
follow_up_usage = self._extract_anthropic_token_usage(final_response)
self._track_token_usage_internal(follow_up_usage)
# Extract final text content
final_content = ""
if final_response.content:
for content_block in final_response.content:
if hasattr(content_block, "text"):
final_content += content_block.text
final_content = self._apply_stop_words(final_content)
# Emit completion event for the final response
self._emit_call_completed_event(
response=final_content,
call_type=LLMCallType.LLM_CALL,
from_task=from_task,
from_agent=from_agent,
messages=follow_up_params["messages"],
)
# Log combined token usage
total_usage = {
"input_tokens": follow_up_usage.get("input_tokens", 0),
"output_tokens": follow_up_usage.get("output_tokens", 0),
"total_tokens": follow_up_usage.get("total_tokens", 0),
}
if total_usage.get("total_tokens", 0) > 0:
logging.info(f"Anthropic API tool conversation usage: {total_usage}")
return final_content
except Exception as e:
if is_context_length_exceeded(e):
logging.error(f"Context window exceeded in tool follow-up: {e}")
raise LLMContextLengthExceededError(str(e)) from e
logging.error(f"Tool follow-up conversation failed: {e}")
# Fallback: return the first tool result if follow-up fails
if tool_results:
return tool_results[0]["content"]
raise e
def supports_function_calling(self) -> bool:
"""Check if the model supports function calling."""
return self.supports_tools

View File

@@ -0,0 +1,665 @@
import os
import sys
import types
from unittest.mock import patch, MagicMock
import pytest
from crewai.llm import LLM
from crewai.crew import Crew
from crewai.agent import Agent
from crewai.task import Task
@pytest.fixture(autouse=True)
def mock_anthropic_api_key():
"""Automatically mock ANTHROPIC_API_KEY for all tests in this module."""
with patch.dict(os.environ, {"ANTHROPIC_API_KEY": "test-key"}):
yield
def test_anthropic_completion_is_used_when_anthropic_provider():
"""
Test that AnthropicCompletion from completion.py is used when LLM uses provider 'anthropic'
"""
llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
assert llm.__class__.__name__ == "AnthropicCompletion"
assert llm.provider == "anthropic"
assert llm.model == "claude-3-5-sonnet-20241022"
def test_anthropic_completion_is_used_when_claude_provider():
"""
Test that AnthropicCompletion is used when provider is 'claude'
"""
llm = LLM(model="claude/claude-3-5-sonnet-20241022")
from crewai.llms.providers.anthropic.completion import AnthropicCompletion
assert isinstance(llm, AnthropicCompletion)
assert llm.provider == "claude"
assert llm.model == "claude-3-5-sonnet-20241022"
def test_anthropic_tool_use_conversation_flow():
"""
Test that the Anthropic completion properly handles tool use conversation flow
"""
from unittest.mock import Mock, patch
from crewai.llms.providers.anthropic.completion import AnthropicCompletion
from anthropic.types.tool_use_block import ToolUseBlock
# Create AnthropicCompletion instance
completion = AnthropicCompletion(model="claude-3-5-sonnet-20241022")
# Mock tool function
def mock_weather_tool(location: str) -> str:
return f"The weather in {location} is sunny and 75°F"
available_functions = {"get_weather": mock_weather_tool}
# Mock the Anthropic client responses
with patch.object(completion.client.messages, 'create') as mock_create:
# Mock initial response with tool use - need to properly mock ToolUseBlock
mock_tool_use = Mock(spec=ToolUseBlock)
mock_tool_use.id = "tool_123"
mock_tool_use.name = "get_weather"
mock_tool_use.input = {"location": "San Francisco"}
mock_initial_response = Mock()
mock_initial_response.content = [mock_tool_use]
mock_initial_response.usage = Mock()
mock_initial_response.usage.input_tokens = 100
mock_initial_response.usage.output_tokens = 50
# Mock final response after tool result - properly mock text content
mock_text_block = Mock()
# Set the text attribute as a string, not another Mock
mock_text_block.configure_mock(text="Based on the weather data, it's a beautiful day in San Francisco with sunny skies and 75°F temperature.")
mock_final_response = Mock()
mock_final_response.content = [mock_text_block]
mock_final_response.usage = Mock()
mock_final_response.usage.input_tokens = 150
mock_final_response.usage.output_tokens = 75
# Configure mock to return different responses on successive calls
mock_create.side_effect = [mock_initial_response, mock_final_response]
# Test the call
messages = [{"role": "user", "content": "What's the weather like in San Francisco?"}]
result = completion.call(
messages=messages,
available_functions=available_functions
)
# Verify the result contains the final response
assert "beautiful day in San Francisco" in result
assert "sunny skies" in result
assert "75°F" in result
# Verify that two API calls were made (initial + follow-up)
assert mock_create.call_count == 2
# Verify the second call includes tool results
second_call_args = mock_create.call_args_list[1][1] # kwargs of second call
messages_in_second_call = second_call_args["messages"]
# Should have original user message + assistant tool use + user tool result
assert len(messages_in_second_call) == 3
assert messages_in_second_call[0]["role"] == "user"
assert messages_in_second_call[1]["role"] == "assistant"
assert messages_in_second_call[2]["role"] == "user"
# Verify tool result format
tool_result = messages_in_second_call[2]["content"][0]
assert tool_result["type"] == "tool_result"
assert tool_result["tool_use_id"] == "tool_123"
assert "sunny and 75°F" in tool_result["content"]
def test_anthropic_completion_module_is_imported():
"""
Test that the completion module is properly imported when using Anthropic provider
"""
module_name = "crewai.llms.providers.anthropic.completion"
# Remove module from cache if it exists
if module_name in sys.modules:
del sys.modules[module_name]
# Create LLM instance - this should trigger the import
LLM(model="anthropic/claude-3-5-sonnet-20241022")
# Verify the module was imported
assert module_name in sys.modules
completion_mod = sys.modules[module_name]
assert isinstance(completion_mod, types.ModuleType)
# Verify the class exists in the module
assert hasattr(completion_mod, 'AnthropicCompletion')
def test_fallback_to_litellm_when_native_anthropic_fails():
"""
Test that LLM falls back to LiteLLM when native Anthropic completion fails
"""
# Mock the _get_native_provider to return a failing class
with patch('crewai.llm.LLM._get_native_provider') as mock_get_provider:
class FailingCompletion:
def __init__(self, *args, **kwargs):
raise Exception("Native Anthropic SDK failed")
mock_get_provider.return_value = FailingCompletion
# This should fall back to LiteLLM
llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
# Check that it's using LiteLLM
assert hasattr(llm, 'is_litellm')
assert llm.is_litellm == True
def test_anthropic_completion_initialization_parameters():
"""
Test that AnthropicCompletion is initialized with correct parameters
"""
llm = LLM(
model="anthropic/claude-3-5-sonnet-20241022",
temperature=0.7,
max_tokens=2000,
top_p=0.9,
api_key="test-key"
)
from crewai.llms.providers.anthropic.completion import AnthropicCompletion
assert isinstance(llm, AnthropicCompletion)
assert llm.model == "claude-3-5-sonnet-20241022"
assert llm.temperature == 0.7
assert llm.max_tokens == 2000
assert llm.top_p == 0.9
def test_anthropic_specific_parameters():
"""
Test Anthropic-specific parameters like stop_sequences and streaming
"""
llm = LLM(
model="anthropic/claude-3-5-sonnet-20241022",
stop_sequences=["Human:", "Assistant:"],
stream=True,
max_retries=5,
timeout=60
)
from crewai.llms.providers.anthropic.completion import AnthropicCompletion
assert isinstance(llm, AnthropicCompletion)
assert llm.stop_sequences == ["Human:", "Assistant:"]
assert llm.stream == True
assert llm.client.max_retries == 5
assert llm.client.timeout == 60
def test_anthropic_completion_call():
"""
Test that AnthropicCompletion call method works
"""
llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
# Mock the call method on the instance
with patch.object(llm, 'call', return_value="Hello! I'm Claude, ready to help.") as mock_call:
result = llm.call("Hello, how are you?")
assert result == "Hello! I'm Claude, ready to help."
mock_call.assert_called_once_with("Hello, how are you?")
def test_anthropic_completion_called_during_crew_execution():
"""
Test that AnthropicCompletion.call is actually invoked when running a crew
"""
# Create the LLM instance first
anthropic_llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
# Mock the call method on the specific instance
with patch.object(anthropic_llm, 'call', return_value="Tokyo has 14 million people.") as mock_call:
# Create agent with explicit LLM configuration
agent = Agent(
role="Research Assistant",
goal="Find population info",
backstory="You research populations.",
llm=anthropic_llm,
)
task = Task(
description="Find Tokyo population",
expected_output="Population number",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
# Verify mock was called
assert mock_call.called
assert "14 million" in str(result)
def test_anthropic_completion_call_arguments():
"""
Test that AnthropicCompletion.call is invoked with correct arguments
"""
# Create LLM instance first
anthropic_llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
# Mock the instance method
with patch.object(anthropic_llm, 'call') as mock_call:
mock_call.return_value = "Task completed successfully."
agent = Agent(
role="Test Agent",
goal="Complete a simple task",
backstory="You are a test agent.",
llm=anthropic_llm # Use same instance
)
task = Task(
description="Say hello world",
expected_output="Hello world",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
crew.kickoff()
# Verify call was made
assert mock_call.called
# Check the arguments passed to the call method
call_args = mock_call.call_args
assert call_args is not None
# The first argument should be the messages
messages = call_args[0][0] # First positional argument
assert isinstance(messages, (str, list))
# Verify that the task description appears in the messages
if isinstance(messages, str):
assert "hello world" in messages.lower()
elif isinstance(messages, list):
message_content = str(messages).lower()
assert "hello world" in message_content
def test_multiple_anthropic_calls_in_crew():
"""
Test that AnthropicCompletion.call is invoked multiple times for multiple tasks
"""
# Create LLM instance first
anthropic_llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
# Mock the instance method
with patch.object(anthropic_llm, 'call') as mock_call:
mock_call.return_value = "Task completed."
agent = Agent(
role="Multi-task Agent",
goal="Complete multiple tasks",
backstory="You can handle multiple tasks.",
llm=anthropic_llm # Use same instance
)
task1 = Task(
description="First task",
expected_output="First result",
agent=agent,
)
task2 = Task(
description="Second task",
expected_output="Second result",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task1, task2]
)
crew.kickoff()
# Verify multiple calls were made
assert mock_call.call_count >= 2 # At least one call per task
# Verify each call had proper arguments
for call in mock_call.call_args_list:
assert len(call[0]) > 0 # Has positional arguments
messages = call[0][0]
assert messages is not None
def test_anthropic_completion_with_tools():
"""
Test that AnthropicCompletion.call is invoked with tools when agent has tools
"""
from crewai.tools import tool
@tool
def sample_tool(query: str) -> str:
"""A sample tool for testing"""
return f"Tool result for: {query}"
# Create LLM instance first
anthropic_llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
# Mock the instance method
with patch.object(anthropic_llm, 'call') as mock_call:
mock_call.return_value = "Task completed with tools."
agent = Agent(
role="Tool User",
goal="Use tools to complete tasks",
backstory="You can use tools.",
llm=anthropic_llm, # Use same instance
tools=[sample_tool]
)
task = Task(
description="Use the sample tool",
expected_output="Tool usage result",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
crew.kickoff()
assert mock_call.called
call_args = mock_call.call_args
call_kwargs = call_args[1] if len(call_args) > 1 else {}
if 'tools' in call_kwargs:
assert call_kwargs['tools'] is not None
assert len(call_kwargs['tools']) > 0
def test_anthropic_raises_error_when_model_not_supported():
"""Test that AnthropicCompletion raises ValueError when model not supported"""
# Mock the Anthropic client to raise an error
with patch('crewai.llms.providers.anthropic.completion.Anthropic') as mock_anthropic_class:
mock_client = MagicMock()
mock_anthropic_class.return_value = mock_client
# Mock the error that Anthropic would raise for unsupported models
from anthropic import NotFoundError
mock_client.messages.create.side_effect = NotFoundError(
message="The model `model-doesnt-exist` does not exist",
response=MagicMock(),
body={}
)
llm = LLM(model="anthropic/model-doesnt-exist")
with pytest.raises(Exception): # Should raise some error for unsupported model
llm.call("Hello")
def test_anthropic_client_params_setup():
"""
Test that client_params are properly merged with default client parameters
"""
# Use only valid Anthropic client parameters
custom_client_params = {
"default_headers": {"X-Custom-Header": "test-value"},
}
with patch.dict(os.environ, {"ANTHROPIC_API_KEY": "test-key"}):
llm = LLM(
model="anthropic/claude-3-5-sonnet-20241022",
api_key="test-key",
base_url="https://custom-api.com",
timeout=45,
max_retries=5,
client_params=custom_client_params
)
from crewai.llms.providers.anthropic.completion import AnthropicCompletion
assert isinstance(llm, AnthropicCompletion)
assert llm.client_params == custom_client_params
merged_params = llm._get_client_params()
assert merged_params["api_key"] == "test-key"
assert merged_params["base_url"] == "https://custom-api.com"
assert merged_params["timeout"] == 45
assert merged_params["max_retries"] == 5
assert merged_params["default_headers"] == {"X-Custom-Header": "test-value"}
def test_anthropic_client_params_override_defaults():
"""
Test that client_params can override default client parameters
"""
override_client_params = {
"timeout": 120, # Override the timeout parameter
"max_retries": 10, # Override the max_retries parameter
"default_headers": {"X-Override": "true"} # Valid custom parameter
}
with patch.dict(os.environ, {"ANTHROPIC_API_KEY": "test-key"}):
llm = LLM(
model="anthropic/claude-3-5-sonnet-20241022",
api_key="test-key",
timeout=30,
max_retries=3,
client_params=override_client_params
)
# Verify this is actually AnthropicCompletion, not LiteLLM fallback
from crewai.llms.providers.anthropic.completion import AnthropicCompletion
assert isinstance(llm, AnthropicCompletion)
merged_params = llm._get_client_params()
# client_params should override the individual parameters
assert merged_params["timeout"] == 120
assert merged_params["max_retries"] == 10
assert merged_params["default_headers"] == {"X-Override": "true"}
def test_anthropic_client_params_none():
"""
Test that client_params=None works correctly (no additional parameters)
"""
with patch.dict(os.environ, {"ANTHROPIC_API_KEY": "test-key"}):
llm = LLM(
model="anthropic/claude-3-5-sonnet-20241022",
api_key="test-key",
base_url="https://api.anthropic.com",
timeout=60,
max_retries=2,
client_params=None
)
from crewai.llms.providers.anthropic.completion import AnthropicCompletion
assert isinstance(llm, AnthropicCompletion)
assert llm.client_params is None
merged_params = llm._get_client_params()
expected_keys = {"api_key", "base_url", "timeout", "max_retries"}
assert set(merged_params.keys()) == expected_keys
# Fixed assertions - all should be inside the with block and use correct values
assert merged_params["api_key"] == "test-key" # Not "test-anthropic-key"
assert merged_params["base_url"] == "https://api.anthropic.com"
assert merged_params["timeout"] == 60
assert merged_params["max_retries"] == 2
def test_anthropic_client_params_empty_dict():
"""
Test that client_params={} works correctly (empty additional parameters)
"""
with patch.dict(os.environ, {"ANTHROPIC_API_KEY": "test-key"}):
llm = LLM(
model="anthropic/claude-3-5-sonnet-20241022",
api_key="test-key",
client_params={}
)
from crewai.llms.providers.anthropic.completion import AnthropicCompletion
assert isinstance(llm, AnthropicCompletion)
assert llm.client_params == {}
merged_params = llm._get_client_params()
assert "api_key" in merged_params
assert merged_params["api_key"] == "test-key"
def test_anthropic_model_detection():
"""
Test that various Anthropic model formats are properly detected
"""
# Test Anthropic model naming patterns that actually work with provider detection
anthropic_test_cases = [
"anthropic/claude-3-5-sonnet-20241022",
"claude/claude-3-5-sonnet-20241022"
]
for model_name in anthropic_test_cases:
llm = LLM(model=model_name)
from crewai.llms.providers.anthropic.completion import AnthropicCompletion
assert isinstance(llm, AnthropicCompletion), f"Failed for model: {model_name}"
def test_anthropic_supports_stop_words():
"""
Test that Anthropic models support stop sequences
"""
llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
assert llm.supports_stop_words() == True
def test_anthropic_context_window_size():
"""
Test that Anthropic models return correct context window sizes
"""
llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
context_size = llm.get_context_window_size()
# Should return a reasonable context window size (Claude 3.5 has 200k tokens)
assert context_size > 100000 # Should be substantial
assert context_size <= 200000 # But not exceed the actual limit
def test_anthropic_message_formatting():
"""
Test that messages are properly formatted for Anthropic API
"""
llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
# Test message formatting
test_messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello"},
{"role": "assistant", "content": "Hi there!"},
{"role": "user", "content": "How are you?"}
]
formatted_messages, system_message = llm._format_messages_for_anthropic(test_messages)
# System message should be extracted
assert system_message == "You are a helpful assistant."
# Remaining messages should start with user
assert formatted_messages[0]["role"] == "user"
assert len(formatted_messages) >= 3 # Should have user, assistant, user messages
def test_anthropic_streaming_parameter():
"""
Test that streaming parameter is properly handled
"""
# Test non-streaming
llm_no_stream = LLM(model="anthropic/claude-3-5-sonnet-20241022", stream=False)
assert llm_no_stream.stream == False
# Test streaming
llm_stream = LLM(model="anthropic/claude-3-5-sonnet-20241022", stream=True)
assert llm_stream.stream == True
def test_anthropic_tool_conversion():
"""
Test that tools are properly converted to Anthropic format
"""
llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
# Mock tool in CrewAI format
crewai_tools = [{
"type": "function",
"function": {
"name": "test_tool",
"description": "A test tool",
"parameters": {
"type": "object",
"properties": {
"query": {"type": "string", "description": "Search query"}
},
"required": ["query"]
}
}
}]
# Test tool conversion
anthropic_tools = llm._convert_tools_for_interference(crewai_tools)
assert len(anthropic_tools) == 1
assert anthropic_tools[0]["name"] == "test_tool"
assert anthropic_tools[0]["description"] == "A test tool"
assert "input_schema" in anthropic_tools[0]
def test_anthropic_environment_variable_api_key():
"""
Test that Anthropic API key is properly loaded from environment
"""
with patch.dict(os.environ, {"ANTHROPIC_API_KEY": "test-anthropic-key"}):
llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
assert llm.client is not None
assert hasattr(llm.client, 'messages')
def test_anthropic_token_usage_tracking():
"""
Test that token usage is properly tracked for Anthropic responses
"""
llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
# Mock the Anthropic response with usage information
with patch.object(llm.client.messages, 'create') as mock_create:
mock_response = MagicMock()
mock_response.content = [MagicMock(text="test response")]
mock_response.usage = MagicMock(input_tokens=50, output_tokens=25)
mock_create.return_value = mock_response
result = llm.call("Hello")
# Verify the response
assert result == "test response"
# Verify token usage was extracted
usage = llm._extract_anthropic_token_usage(mock_response)
assert usage["input_tokens"] == 50
assert usage["output_tokens"] == 25
assert usage["total_tokens"] == 75