mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-26 08:38:15 +00:00
Migrate docs from MkDocs to Mintlify (#1423)
* add new mintlify docs * add favicon.svg * minor edits * add github stats
This commit is contained in:
72
docs/how-to/langtrace-observability.mdx
Normal file
72
docs/how-to/langtrace-observability.mdx
Normal file
@@ -0,0 +1,72 @@
|
||||
---
|
||||
title: Agent Monitoring with Langtrace
|
||||
description: How to monitor cost, latency, and performance of CrewAI Agents using Langtrace, an external observability tool.
|
||||
icon: chart-line
|
||||
---
|
||||
|
||||
# Langtrace Overview
|
||||
|
||||
Langtrace is an open-source, external tool that helps you set up observability and evaluations for Large Language Models (LLMs), LLM frameworks, and Vector Databases.
|
||||
While not built directly into CrewAI, Langtrace can be used alongside CrewAI to gain deep visibility into the cost, latency, and performance of your CrewAI Agents.
|
||||
This integration allows you to log hyperparameters, monitor performance regressions, and establish a process for continuous improvement of your Agents.
|
||||
|
||||

|
||||

|
||||

|
||||
|
||||
## Setup Instructions
|
||||
|
||||
<Steps>
|
||||
<Step title="Sign up for Langtrace">
|
||||
Sign up by visiting [https://langtrace.ai/signup](https://langtrace.ai/signup).
|
||||
</Step>
|
||||
<Step title="Create a project">
|
||||
Set the project type to `CrewAI` and generate an API key.
|
||||
</Step>
|
||||
<Step title="Install Langtrace in your CrewAI project">
|
||||
Use the following command:
|
||||
|
||||
```bash
|
||||
pip install langtrace-python-sdk
|
||||
```
|
||||
</Step>
|
||||
<Step title="Import Langtrace">
|
||||
Import and initialize Langtrace at the beginning of your script, before any CrewAI imports:
|
||||
|
||||
```python
|
||||
from langtrace_python_sdk import langtrace
|
||||
langtrace.init(api_key='<LANGTRACE_API_KEY>')
|
||||
|
||||
# Now import CrewAI modules
|
||||
from crewai import Agent, Task, Crew
|
||||
```
|
||||
</Step>
|
||||
</Steps>
|
||||
|
||||
### Features and Their Application to CrewAI
|
||||
|
||||
1. **LLM Token and Cost Tracking**
|
||||
|
||||
- Monitor the token usage and associated costs for each CrewAI agent interaction.
|
||||
|
||||
2. **Trace Graph for Execution Steps**
|
||||
|
||||
- Visualize the execution flow of your CrewAI tasks, including latency and logs.
|
||||
- Useful for identifying bottlenecks in your agent workflows.
|
||||
|
||||
3. **Dataset Curation with Manual Annotation**
|
||||
|
||||
- Create datasets from your CrewAI task outputs for future training or evaluation.
|
||||
|
||||
4. **Prompt Versioning and Management**
|
||||
|
||||
- Keep track of different versions of prompts used in your CrewAI agents.
|
||||
- Useful for A/B testing and optimizing agent performance.
|
||||
|
||||
5. **Prompt Playground with Model Comparisons**
|
||||
|
||||
- Test and compare different prompts and models for your CrewAI agents before deployment.
|
||||
|
||||
6. **Testing and Evaluations**
|
||||
|
||||
- Set up automated tests for your CrewAI agents and tasks.
|
||||
Reference in New Issue
Block a user